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ABSTRACT
Group-fairness in classification aims for equality of a predictive

utility across different sensitive sub-populations, e.g., race or gen-

der. Equality or near-equality constraints in group-fairness often

worsen not only the aggregate utility but also the utility for the least

advantaged sub-population. In this paper, we apply the principles of

Pareto-efficiency and least-difference to the utility being accuracy,

as an illustrative example, and arrive at the Rawls classifier that
minimizes the error rate on the worst-off sensitive sub-population.

Our mathematical characterization shows that the Rawls classifier
uniformly applies a threshold to an ideal score of features, in the

spirit of fair equality of opportunity. In practice, such a score or

a feature representation is often computed by a black-box model

that has been useful but unfair. Our second contribution is practi-

cal Rawlsian fair adaptation of any given black-box deep learning

model, without changing the score or feature representation it

computes. Given any score function or feature representation and

only its second-order statistics on the sensitive sub-populations,

we seek a threshold classifier on the given score or a linear thresh-

old classifier on the given feature representation that achieves the

Rawls error rate restricted to this hypothesis class. Our technical

contribution is to formulate the above problems using ambiguous

chance constraints, and to provide efficient algorithms for Rawlsian

fair adaptation, along with provable upper bounds on the Rawls

error rate. Our empirical results show significant improvement over

state-of-the-art group-fair algorithms, even without retraining for

fairness.

CCS CONCEPTS
• Computing methodologies → Supervised learning by clas-
sification; • Theory of computation→Machine learning theory;
• Social and professional topics→ Race and ethnicity; Gender.
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1 INTRODUCTION
Algorithmic decisions and risk assessment tools in real-world ap-

plications, e.g., recruitment, loan qualification, recidivism, have

several examples of effective and scalable black-box models, many

of which have received strong criticism for exhibiting racial or gen-

der bias [6, 7]. Anti-discrimination laws and official public policy

statements [1, 2, 27, 31] often explicitly demand that such black-box

models be fairness-compliant.

Fair classification is an important problem in fairness-aware

learning. Previous work on fair classification has largely focused on

group-fairness or classification parity, which means equal or near-

equal predictive performance on different sensitive sub-populations,

e.g., similar accuracy [11, 15, 32], statistical parity [17], equalized

odds [22], similar false positive rates [22]. A popular objective in

group-fair classification is accuracy maximization subject to equal

or near-equal predictive performance on different sensitive sub-

populations.

What makes any fairness objective well founded? In this pa-

per, we consider the basic principles of Pareto-efficiency and least-
difference, following the work of Rawls on distributive justice [34–

36]. A Pareto-efficient solution maximizes some aggregate utility

over the entire population. Thus, it is not possible to improve the

performance on any one sub-population without sacrificing perfor-

mance on another sub-population beyond what a Pareto-efficient

solution gives. The least-difference principle allows certain inequal-

ities as fair, if reducing these inequalities either adversely affects

the others or does not uplift the worst-off. For example, a group-

fair solution that equalizes utilities across different sensitive sub-

populations satisfies the least-difference principle vacuously be-

cause it has no inequality. Therefore, typical group-fair algorithms

maximize accuracy subject to group-fairness constraints ensuring

near-equal utilities for different sensitive sub-populations. However,

none of the above solutions satisfy both the Pareto-efficiency and
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least-difference principles simultaneously. Do there exist solutions

that satisfy both these principles simultaneously?

The most accurate classifier is the Bayes classifier that predicts

using a uniform threshold of 1/2 applied to the true outcome proba-

bility of every example. Previous work provides similar characteri-

zation of optimal group-fair classifiers as threshold classifiers on

some ideal score [11–13, 32]. Do such threshold-on-score charac-

terizations hold for Rawlsian fairness too?

Most black-box models in practice are often optimized for accu-

racy, and they output a risk score or a feature representation along

with their prediction. Even when an existing model is found to be

biased during a fairness audit, retraining a different fair model is

difficult on proprietary or private training data. Algorithmic ideas

to develop group-fair classifiers that maximize accuracy subject

to group-fairness constraints require estimates of true outcome

probability [11, 32], which are intractable with finite samples. Most

post-processing methods for group-fairness also require estimates

of the true outcome probabilities [22, 29, 33]. Secondly, existing

group-fairness toolkit [11] can use a given risk score as an input

feature and adapt for group-fairness but the resulting group-fair

classifier does not predict using a threshold on that same risk score.

Is fair adaptation possible without changing the risk scores or fea-

ture representations?

The cost or benefit of a decision for an individual depends on the

protected attribute (e.g., race, gender, age) as well as the true class

label. For example, an underprivileged person who qualifies for a

loan and successfully repays, has a greater utility than a privileged

person who qualifies for the same loan and repays, and also greater

utility than another underprivileged person who qualifies but does

not repay. Many group-fair classifiers with high and near-equal

accuracy on different races or genders can have poor accuracy on

either the positive or negative class therein. This typecasting is

exacerbated when there is class imbalance within a group. There-

fore, we consider the sensitive sub-populations defined by group

memberships (e.g., race, gender, age) as well as true class labels.

1.1 Our results
In Section 3, we define the Rawls classifier as an optimal solution to

an objective that simultaneously satisfies both the Pareto-efficiency
and least-difference principles in fair classification. When the classi-

fication utility is quantified by accuracy, the Rawls classifier mini-

mizes the error rate on the worst-off sensitive sub-population over

all classifiers; we call its optimal value as the Rawls error rate (see
Definition 3). The max-min objective is well-known in social choice

theory for equitable distribution of goods [21, 39]; we provide a for-

mulation so that it applies to fair classification. We mathematically

characterize the Rawls classifier and the Rawls error rate (Theorem
6). Moreover, our additional observations in Subsection 3.2 show

that the characterization of the Rawls classifier reveals interest-

ing, non-trivial properties about its most disadvantaged sensitive

sub-populations.

Our mathematical characterization of the Rawls classifier shows
that it uniformly applies a threshold to a certain ideal score of fea-
tures, whose description requires the underlying data distribution

explicitly. We give a description of the Rawls classifier as a threshold
on an ideal score function given by a convex combination of signed

unveil functions, which quantify the likelihood of an individual

belonging to a sensitive sub-population given only the unprotected

attributes. Computing these unveil functions from a finite sam-

ple drawn randomly from an arbitrary underlying distribution is

intractable, a familiar obstacle encountered for exact implementa-

tion of the accuracy maximizing Bayes classifier and the optimal

group-fair classifier characterized in previous work [11, 32].

For Rawlsian fair adaptation of deep learning classifiers in prac-

tice, we consider the following formulation. Given a non-ideal score

function or a feature map computed by a black-box model, and only

its second-order statistics on the sensitive sub-populations, we seek

a threshold classifier on the given non-ideal score or a linear thresh-

old classifier on the given feature map that achieves the Rawls error

rate in this restricted hypothesis class. In Section 4, we formulate

the above problems using ambiguous chance constraints, and pro-

vide efficient algorithms for fair adaptation, along with provable

upper bounds on the Rawls error rate in the restricted setting. In

Subsection 4.2, we show that, when the feature map distributions

conditioned on each sensitive sub-population are Gaussian and

we seek a linear threshold classifier, then we can provably and

efficiently achieve the restricted Rawls error rate (Theorem 13).

In Section 5, we show that our Rawlsian fair adaptation for-

mulation above is readily applicable to any black-box model that

computes a score function or a feature representation. For example,

we train a model to maximize classification accuracy on a standard

dataset used in text classification for toxicity. Our Rawlsian adap-

tation using its label-likelihood scores and feature representation

does not require retraining a different fair model, and shows a sig-

nificant improvement in the error rates on the worst-off sensitive

sub-populations. We also show a similar improvement over real-

world and synthetic data sets, when compared against best known

post-processing fairness methods [29] and group-fair classifiers

[11] as our baselines.

1.2 Related work
In the context of fair classification, recent work by Hashimoto et al.

[23] studies Rawlsian fairness for empirical risk minimization, and

observes that Rawlsian fairness prevents disparity amplification

over time, which may be unavoidable if we insist on near-equal

group-wise performance as a group-fairness constraint. Recent

work has also looked at Rawlsian theory to study the veil of ig-

norance and inequality measurements [20, 24, 25, 38], contextual

bandits [28], fair meta-learning [42], envy-free classification [26].

Recent work has also looked at Rawlsian theory to study fairness

in different settings of machine learning such as the veil of ignorance,
moral luck-vs-desert, difference principle etc. to study fair equality

of opportunity, inequality measurements, bandit problems [20, 24,

25, 38]. Our max-min objective is a prioritarian objective based only
on the Pareto-efficiency and the least-difference principles from

distributive justice.

Previous work has also proposed different approaches for post-

processing to achieve group-fairness on black-box models [3, 8, 18,

19, 22, 29]. However, they do not address fair adaptation of black-

box deep learning models without changing their scores or feature

representation similar to our work.



2 NOTATION
LetX be the space of input features, {0, 1} be the binary class labels,

and [p] = {1, 2, . . . ,p} be the set of protected attributes, e.g., race,

gender, age. Any input data distribution corresponds to a joint

distribution D on X × {0, 1} × [p]. Let (X ,Y ,Z ) denote a random
element of X× {0, 1} × [p] drawn from the joint distributionD. Let

pi j denote Pr (Y = i,Z = j).

Definition 1. For any i ∈ {0, 1}, j ∈ [p], define the sensitive
sub-population Si j ⊆ X × {0, 1} × [p] as Si j = {(x , i, j) : x ∈ X}.

The utility of a decision often depends on the protected attribute

as well as the true label. This is implicitly considered in metrics

such as false positive rates over groups. Our definition of sensitive

sub-populations makes this more explicit.

Definition 2. For any i ∈ {0, 1}, j ∈ [p], define the unveil func-
tion ηi j : X → R≥0 of the sensitive sub-population Si j as

ηi j (x) = Pr (Y = i,Z = j | X = x) .

We define the normalized unveil function ui j : X → R≥0 as

ui j (x) = ηi j (x)/pi j , where pi j = Pr (Y = i,Z = j).

We call ui j as the normalized unveil function because

EX

[
ηi j (X )

pi j

]
= 1, for all i ∈ {0, 1}, j ∈ [p].

Let Di j denote the conditional distribution for X given the class

label Y = i and the protected attribute Z = j, and Xi j denote a

random element of X drawn from Di j .

As is common in fairness literature, we denote a binary classifier

by a function f : X → {0, 1}. Note that this subsumes both group-

aware as well as group-blind classifiers depending on whether the

protected attributes also appear in X or not.

3 THE RAWLS CLASSIFIER
A natural way to measure the cost of a binary classifier f on the sen-

sitive sub-population Si j is by its error rate ri j (f ) = Pr (f (X ) , Y | Y = i,Z = j).
Here are two well-known basic principles of efficiency and fair-

ness from distributive justice and social choice theory, when we

consider classification accuracy as utility.

(1) Pareto-efficiency principle:A classifier f is Pareto-efficient,

if there exists some λ ∈ R
2p
≥0

such that f minimizes

∑
i j λi jri j (f )

over all f : X → {0, 1}. As a consequence, it is not possi-

ble to improve the performance on any one sub-population

without sacrificing performance on another sub-population.

(2) Least-difference principle:A classifier f satisfies the least-
difference principle, if we have

��ri j (д) − rkl (д)
�� < ��ri j (f ) − rkl (f )

��
,

for any classifier д and two sensitive sub-populations Si j and
Skl , then either rab (д) > rab (f ), for somea,b, ormax(a,b) rab (д) ≥
max(a,b) rab (f ). In other words, we cannot uplift the worst-

off and reduce existing inequality without adversely affecting

others.

Let
ˆf be the Bayes classifier that maximizes accuracy. Then

ˆf
minimizes the total error

∑
i j pi jri j (f ) among all f : X → {0, 1},

and hence it is Pareto-efficient. However, the Bayes classifier
ˆf can

violate the least-difference principle.

A group-fair classifier that equalizes false positive rates r0j (f )’s
for all j, or false negative error rates r1j (f )’s for all j, vacuously
satisfies the least-difference principle, assuming we restrict our-

selves to either only S0j ’s or only S1j ’s as sensitive sub-populations,
respectively. However, a group-fair solution or even a solution that

maximizes accuracy subject to near-equality group-fairness con-

straints is not necessarily Pareto-efficient. Insisting on equality

or near-equality often violates the principle of Pareto-efficiency

when the only way to achieve equality makes it worse but equal

for individual sensitive sub-populations.

Now we state our objective that defines the Rawls classifier, and

we will show later in this section that it satisfies both the Pareto-

efficiency and least-difference principles.

Definition 3. Given any joint distribution D on X × {0, 1} × [p],
we define the Rawls classifier and the Rawls error rate, respectively, as

f ∗ = argmin

f :X→{0,1}
max

i ∈{0,1}, j ∈[p]
ri j (f ),

r∗ = min

f :X→{0,1}
max

i ∈{0,1}, j ∈[p]
ri j (f ),

where ri j (f ) = Pr (f (X ) , Y | Y = i,Z = j), which is the error rate
of f on the sensitive sub-population Si j .

It is easy to see that the Rawls classifier satisfies the least-difference

principle. Any classifier д that reduces existing inequalities from

f ∗ with adversely effects, i.e., keeping ri j (д) ≤ ri j (f ), for all i, j,
must either leave the maximum error rate untouched. Otherwise,

it would contradict f ∗ being the minimizer of max(i, j) ri j (f ).
On the other hand, Pareto-efficiency of the Rawls classifier re-

quires a short proof (see Subsection 3.1). Interestingly, this also

helps in characterizing it as a threshold classifier on an ideal score
function.

Remark: Under reasonable assumptions on utility functions

and choice spaces in social choice theory, it is known that any

solution that satisfies Pareto-efficiency and least-difference prin-

ciples simultaneously must actually be a solution that maximizes

the minimum utility across participants [21, 39]. More specifically,

it is a lex-min solution, i.e., if there exist multiple solutions that

maximize the minimum utility across participants then a lex-min

solution maximizes the second minimum utility among them, and

then the third minimum utility and so on. However, in this paper,

we focus only on maximizing the minimum utility, or equivalently,

minimizing the maximum error rate.

We show that the error rate ri j (f ) of any binary classifier f on

its sensitive sub-population Si j can be expressed as a weighted

expectation of f (X ), weighted by the normalized unveil function

ui j (X ) of the sensitive sub-population Si j (see Definition 2). As a

consequence, each ri j (f ) is a linear function of f , when the data

distribution D is fixed. This is a known observation already used

in previous work [11, 32].

Proposition 4. For any binary classifier f : X → {0, 1}, its error
rate ri j (f ) on a sensitive sub-populations Si j equals

ri j (f ) =

{
EX

[
f (X ) u0j (X )

]
, for i = 0,

1 −EX
[
f (X ) u1j (X )

]
, for i = 1,

where pi j = Pr (Y = i,Z = j) and ui j (x) the normalized unveil func-
tion of Si j (see Definition 2).



For any binary classifier f , we express its maximum error rate

ri j (f ) over all sensitive sub-populations Si j as the maximum over

all possible convex combinations of ri j (f )’s. As a consequence,

maxi j ri j (f ) is also a linear function of f , when the coefficients in

the optimal convex combination and the underlying data distribu-

tion D are fixed.

Proposition 5. For any binary classifier f : X → {0, 1}, the
maximum error rate over all sensitive sub-populations Si j equals

max

i ∈{0,1}, j ∈[p]
ri j (f )

= max∑
i j ci j ≤1

ci j ≥0, ∀i j
EX

f (X )
©­«

∑
i ∈{0,1}, j ∈[p]

(−1)ici jui j (X )
ª®¬


+
∑
j ∈[p]

c1j .

Proof of Proposition 4 and Proposition 5 are given in Appendix

A.

3.1 Characterization of the Rawls classifier
Now we are ready to characterize the Rawls classifier. We char-

acterize the Rawls classifier as a threshold classifier on an ideal

score function that is expressed as a certain convex combination of

signed, normalized unveil functions ui j (x)’s. Moreover, we show

that the non-zero coefficients in this convex combination actually

indicate the maximally disadvantaged or vulnerable sensitive sub-

populations Si j ’s.

Theorem 6. Given any data distribution D on X × {0, 1} × [p],
there exist non-negative coefficients c∗i j , for i ∈ {0, 1} and j ∈ [p], sat-
isfying

∑
i ∈{0,1}, j ∈[p] c

∗
i j = 1, such that the Rawls classifier achieving

the Rawls error rate is given by

f ∗(x) = 1
©­«
∑
j ∈[p]

c∗
1ju1j (x) −

∑
j ∈[p]

c∗
0ju0j (x) ≥ 0

ª®¬ .
and the Rawls error rate is equal to r∗ =

∑
i ∈{0,1}, j ∈[p] c

∗
i jri j (f

∗).

As an immediate corollary, we get Pareto-efficiency of the Rawls

classifier because

f ∗ = argmin

f :X→{0,1}

∑
i ∈{0,1}, j ∈[p]

c∗i jri j (f ).

Proof of Theorem 6 is given in Appendix A. Our proof is inspired

by [32], who introduced similar techniques in the context of group-

fairness. The main difference from previous work that uses similar

techniques [11, 32] is that the coefficients are for each i ∈ {0, 1} and

j ∈ [p], instead of only j ∈ [p], and moreover, they have a special

meaning as we will show that the non-zero coefficients c∗i j indicate

the most disadvantaged sensitive sub-populations.

In Theorem 6, the indices of non-zero coefficients c∗i j ’s actually

correspond to the sensitive sub-populations that attain the Rawls

error rate r∗, and are therefore, the maximally disadvantaged or

vulnerable sensitive sub-populations.

3.2 Properties of the Rawls classifier
An interesting corollary of the above characterization theorem is

that for any Rawls classifier, the maximally disadvantaged sensitive

sub-population cannot be unique, unless the Rawls classifier is

trivial.

Corollary 7. For any Rawls classifier, the sensitive sub-population
Si j that attains the Rawls error rate ri j (f ∗) = r∗ cannot be unique,
unless the Rawls classifier f ∗ is trivial (i.e., all-zeroes or all-ones).

Another interesting corollary of Theorem 6 is that for any Rawls

classifier, there exist at least two sensitive sub-populations, one

from each class, that both attain the Rawls error rate.

Corollary 8. For any Rawls classifier f ∗, there exist two sensitive
sub-populations S0j and S1k , one from each class, that both of them
attain the Rawls error rate of r0j (f ∗) = r

1k (f
∗) = r∗, unless the

Rawls classifier is trivial (i.e., all-zeroes or all-ones).
Remark: For the above sub-populations, j and k need not be equal.

It is interesting to study the Rawls classifier even in the casewhen

there are no protected attributes, and the sensitive sub-populations

are the positive and negative classes, respectively. This is not stan-

dard for group-fairness but nevertheless relevant from a broader

fairness perspective, i.e., when p = 1, the Rawls classifier minimizes

the maximum of the false positive rate and the false negative rate.

As we shall see, in this special case, Theorem 6 implies that the

Rawls classifier applies a threshold to Pr (Y = 1 | X = x |), similar

to but not the same as the well-known Bayes classifier.

Corollary 9. For p = 1, the Rawls classifier f ∗ is given by
1 (η(x) ≥ t), where η(x) = Pr (Y = 1 | X = x), and the threshold t is
equal to

t =
(c01/p01)

(c11/p11) + (c01/p01)
.

Proof of Corollary 7, Corollary 8 and Corollary 9 are given in

Appendix A.

4 THE RESTRICTED RAWLS CLASSIFIER
AND FAIR ADAPTATION

Theorem 6 shows a characterization of the Rawls classifier as a

threshold classifier on an ideal score function, which can be defined

using the unveil functions ηi j (x) of the sensitive sub-populations
and the optimal coefficients c∗i j ’s. These require the knowledge of

the underlying distribution D explicitly, in addition to the optimal

coefficients c∗i j ’s that are not easy to compute. Moreover, in prac-

tice, computing the unveil functions ηi j (x)’s from a finite sample

drawn from the distributionD is intractable. This leads to a natural

question of whether there exists a more practical definition of the

Rawls classifier and the Rawls error rate, and efficient algorithms

to achieve these.

In practice, we often have a non-ideal score function or a feature

map, and the classifier we compute needs to be efficient, and comes

from a restricted hypothesis class, e.g., threshold classifier on a

score or linear threshold classifier on a feature map. However, we

do not know the underlying data distribution D explicitly but

only have access to certain statistics of the given score function or

feature map on each sensitive sub-population. For simplicity, we



assume that we are given reliable estimates of the second-order

statistics (i.e., means and second moments) of the score function or

feature map on all sensitive sub-populations. This is a reasonable

assumption because the second-order statistics can be estimated

efficiently from a small sample of points from the underlying data

distribution D. Assuming no additional knowledge of D beyond

the second-order statistics, leads to the following definitions of the

set of restricted score-distributions and the restricted Rawls classifier.

Definition 10. For any set of means M = {µi j }i ∈{0,1}, j ∈[p]
with µi j ’s in Rd for all ij, and any set of covariance matrices V =
{Σi j }i ∈{0,1}, j ∈[p] with Σi j ∈ Rd×d for all ij, define the set of re-
stricted score-distributions RMV as all score-distribution pairs (s,D)

such that s : X → Rd is any score function (for d = 1) or any feature
map (for d ≥ 2), and D is any distribution on some X × {0, 1} × [p]
such that

EXi j

[
s(Xi j )

]
= µi j , and

EXi j

[ (
s(Xi j ) − µi j

) (
s(Xi j ) − µi j )

T
)]
= Σi j ,

∀i ∈ {0, 1}, j ∈ [p],

where (X ,Y ,Z ) is a random sample from distribution D, and Xi j is
a random sample X conditioned on Y = i,Z = j.

Definition 11. For any set of restricted score-distributions RMV
as in Definition 10, and any hypothesis class F of classifiers f : Rd →

{0, 1}, define the restricted Rawls classifier and the restricted Rawls
error rate, respectively, as

F ∗ = argmin

f ∈F
max

i ∈{0,1}, j ∈[p]
Ri j (f ),

R∗ = min

f ∈F
max

i ∈{0,1}, j ∈[p]
Ri j (f ),

where Ri j (f ) = sup

(s,D)∈RMV

Pr (f (s(X )) , Y | Y = i,Z = j)

= sup

(s,D)∈RMV

Pr

(
f (s(Xi j )) , Y

)
.

Restricted Rawls setting described above restricts the classifier

f to be from a given hypothesis class but it is also relaxation in

the sense that the distribution D is allowed to vary as long as the

second-order statistics of s(Xi j )’s are fixed.

4.1 Fair Adaptation of Threshold (FAT) in the
restricted Rawls setting

In Theorem 12, we characterize the restricted Rawls classifier and

give a constructive, algorithmic proof for finding it by formulating

the problem using ambiguous chance constraints. As a result, we

are able to take any existing threshold classifier on some score

function, collect the second-order statistics of its score function on

all sensitive sub-populations, and efficiently adapt it to a restricted

Rawls classifier that we call as Fair-Adapted Threshold (FAT) clas-

sifier. Note than many existing classifiers optimized for accuracy

and group-fairness come with their own score functions, and we

can efficiently adapt their thresholds.

Theorem 12. For any set of restricted score-distributions RMV
for d = 1 given by means µi j ’s and variances σ 2

i j ’s (as in Defini-
tion 10), and the hypothesis class F of threshold classifiers fb (x) =

1 (s(x) ≥ b), for the underlying score function, the corresponding re-
stricted Rawls classifier is given by F ∗(x) = fb∗ (x) = 1 (s(x) ≥ b∗)
where the threshold b∗ is equal to

b∗ = µ1j∗ − σ1j∗

√
µ1j∗ − µ0j∗

σ1j∗ + σ0j∗

= µ0j∗ + σ0j∗

√
µ1j∗ − µ0j∗

σ1j∗ + σ0j∗
,

where j∗ = argmin
j ∈[p]

µ1j − µ0j

σ1j + σ0j
.

The algorithmic version of Theorem 12, that first estimates µi j
and σi j using a finite sample from D and then computes b∗ is

what we call as Fair Adaptation of Threshold (FAT). We call the

corresponding classifier fb∗ as the Fair-Adapted Threshold (FAT)
Classifier.

Proof of Theorem 12 is given in Appendix B.

4.2 Fair Linear-Adaptation of Thresholds
(FLAT) in the restricted Rawls setting

In this section, we consider the problem of finding fair adaptation

in the restricted Rawls setting where we are a given score or feature

map s : X → Rd as a black box, and we have its second order

statistics of s(Xi j ), whereXi j is a random sample from the sensitive

sub-populations Si j . We seek a linear threshold classifier on the

feature map s(x), so as to achieve the restricted Rawls error rate.

Another simplifying assumption we make is to let the distributions

s(Xi j )’s be Gaussians with the given means µi j ’s and covariance ma-

trices Σi j ’s. To compare with the remark made after Definition 11,

the Gaussian assumption means that the distributions s(Xi j )’s are
completely characterized once their means and covariance matrices

are known.

In absence of a given feature map, we can also use the basic

features, if X ⊆ Rd . Also note that the even group-fair algorithms

that implement Gaussian Naive Bayes (e.g., Meta Fair by Celis et al.

[11]) also estimate second-order statistics of the data. The second-

order statistics can be efficiently estimated from a small sample,

in contrast with the unveil functions ηi j (X ) that are known to be

intractable from a finite sample.

Theorem 13. Let RMV be any restricted set of score-distributions
RMV given by the means µi j ∈ Rd and covariance matrices Σi j ∈
Rd×d of s(Xi j ), for a random sample Xi j from the sensitive sub-
populations Si j , with an underlying score map s : X → Rd and
data distribution D. Let the restricted hypothesis class F be linear

threshold classifiers fw,b (x) = 1
(
wT s(x) ≥ b

)
. Assuming that the

distributions of s(Xi j ) are Gaussians, the restricted Rawls classifier
fw,b is given by solving the following optimization problem.

w∗ = argmin

w
max

j
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subject to

wT (µ1j − µ0j ) = 1, ∀j ∈ [p].



where the restricted Rawls error rate is given by

r∗ = 1 − Φ
©­­«min

j

(w∗)T (µ1j − µ0j )
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∗
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+
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∗
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ª®®¬ ,
where Φ(·) is the CDF of the standard normal variable N (0, 1). The
optimal threshold for the Rawls classifier is given by

b∗ = w
T
∗ µ0j∗ + Φ

−1(1 − r∗)



Σ1/2

0j∗w∗





2

= (w∗)
T µ1j∗ − Φ−1(1 − r∗)
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,

where j∗ = argmin

j

(w∗)T (µ1j − µ0j )
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We call the restricted Rawls classifier obtained by algorithmic

implementation of Theorem 13 as Fair Linear Adaptation of Thresh-

olds (FLAT) classifier. In the experiments section, we consider two

classifiers (1) FLAT-1, where we approximate s(Xi j )’s by spheri-

cal Gaussians, and (2) FLAT-2, where we approximate s(Xi j )’s by
non-spherical Gaussians.

Proof of Theorem 13 is given in Appendix B.

5 EXPERIMENTS
5.1 Experimental setup
Our baselines for comparison include the given black-box model

(neural network trained for maximizing accuracy), meta-fair clas-

sifier [11], Reject Option Classifier (ROC) [29]. We use maximum

error rate across all sensitive sub-populations as the primary metric

for evaluation. We use the acronym FAT for Fair Adaptation of

Threshold. We use acronyms FLAT1 and FLAT2 to represent Fair

Linear Adaptation of Threshold using spherical covariance matrix

and complete covariance matrix, respectively.

In our experiments, we randomly split every dataset (except

wikipedia talk page dataset) into training set (80 %) and testing set

(20 %). We perform 10 repititions and report average statistics of all

algorithms. We used a multilayer perceptron with 2 hidden layers

to get the score for FAT algorithm or feature embedding for FLAT1

and FLAT2. We use 100 neurons in the first hidden layer and choose

it from the range of 20 to 100 for the second hidden layer using

accuracy. We used adam optimizer with batch size 128. We started

the training with 0.005 learning rate with the step decay learning

rate scheduler and optimized the parameters of the scheduler to

maximize the accuracy.

5.2 Fair adaptation on real world datasets
In this section, we illustrate our Rawlsian fair adaptation of any

given unfair classifier. We use three real world datasets to show

experimental results of our proposed algorithms. The details of

these datasets are given below.

• Wikipedia Talk Page Dataset [41]: In this dataset, the task

is to predict whether a comment is toxic. Previous work

has pointed out that training to maximize accuracy leads to

unintended bias for comments containing terms ‘gay’, ‘black’

etc. ([16], [9]). The dataset has total 95,691 training examples

and 31,867 test examples. We divide all the comments into

Figure 1: Comparison of maximum sub-population error
rate on text classification

Figure 2: Adaptation of scores or feature embeddings on
adult dataset

Figure 3: Adaptation of scores or feature embeddings on
bank dataset

six groups, that define our protected attributes. First five

groups represent whether a comment contains the terms

‘gay’, ‘islam’, ‘muslim’, ‘male’, ‘black’, respectively, and the

sixth group contains comments that contain none of the

above. Note that a comment can be part of more than one

subgroup.

• Adult Income Dataset [14]: In this dataset, the task is to

predict whether an individual has income more than $50K.

The dataset has total 48,842 examples. Protected attributes

in the dataset are gender and race.

• Bank Dataset [14]: In this dataset, the task is to predict

whether a client will subscribe to a term deposit. The dataset



Sub-population Mean Variance Number of Points

(0, 0) (0, -2.5) 2 1900

(0, 1) (5, 3) 1 100

(1, 0) (0, 3) 2 1900

(1, 1) (2, 5) 1 100

Table 1: Details of synthetic dataset 1. Sub-population (i, j)
means population with label i and protected attribute j.

has total 45,211 examples. Protected attribute in the dataset

is age.

We first show fair adaptation of non-linear feature embeddings

and scores on the above mentioned datasets in Figure 1, Figure 2

and Figure 3. On each dataset, we first train a feedforward neural

network to maximize overall accuracy. Then, we use second order

statistics of scores (for FAT) or feature embeddings (for FLAT1,

FLAT2) on each sensitive sub-population for Rawlsian fair adapta-

tion. We use Reject Option Classifier (ROC) applied to the scores

(ROC-Score) and feature embeddings (ROC-Embedding) of the neu-

ral network for comparison. Please note that ROC-Score and ROC-

Embedding use the scores and feature embeddings for the entire

data whereas FAT, FLAT1 and FLAT2 only use their second-order

statistics on sensitive sub-populations.

In Figure 1, we see that FAT and FLAT1 give 10-15 % improvement

in the maximum error rate over all sensitive sub-populations when

compared to the baselines. However, FLAT2 has slightly higher max-

imum sensitive sub-population error rate than ROC-Score because

our fair adaptation only uses second-order statistics on sensitive

sub-populations. In Figure 2, we see that FAT, FLAT1 and FLAT2

achieve around 35-40 % improvement in the maximum error rate

over all sensitive sub-populations when compared to ROC and the

given neural network. On the bank dataset (figure 3), FAT and

FLAT2 achieve around 40-50 % improvement in the maximum er-

ror rate over all sensitive sub-populations when compared to the

baselines, whereas FLAT1 achieves around 20 % improvement over

ROC and the given neural network.

5.3 Fair adaptation on synthetic datasets
We show the effectiveness of fair adaptation by showing quantita-

tive and qualitative improvement on synthetic datasets. The syn-

thetic datasets we consider have a binary-valued protected attribute

(or two groups) and two classes. We use two-dimensional synthetic

datasets for visualization of the decision boundaries given by dif-

ferent classifiers. For each fixed class label and protected attribute

value, the features or examples are generated using a spherical

Gaussian distribution. The parameters of these Gaussians and num-

ber of data points generated are given in Table 1 and Table 2. We

compare the maximum error rate over all sensitive sub-populations

for FLAT1 andMeta-fair classifier, and also the upper bound guaran-

tee on this metric for FLAT1 computed by our algorithm in Figure 4.

We see that FLAT1 outperforms state-of-the-art Meta-fair classifier

and achieves around 70 % smaller value of the maximum error rate

over sensitive sub-populations in synthetic dataset 1, and around

15 % smaller value in synthetic dataset 2. Figure 5, Figure 6, Figure

7 and Figure 8 show the different decision boundaries learnt by our

Sub-population Mean Variance Number of Points

(0, 0) (-5, 0) 2 1900

(0, 1) (-1, -1) 1 100

(1, 0) (5, 0) 2 1900

(1, 1) (1, 1) 1 100

Table 2: Details of synthetic dataset 2. Sub-population (i, j)
means population with label i and protected attribute j.

Figure 4: Comparison of maximum sensitive sub-
population error rate for synthetic datasets

Figure 5: Decision boundary (black line) of FLAT1 on syn-
thetic dataset 1

fair adaptation and Meta-fair. As Meta-fair classifier defines sub-

population using only protected attribute and learns its decision

boundary to equalize error rate on each sub-population defined

only by the protected attribute, it almost ignores sub-population

with label 0 and protected attribute value 1 in synthetic dataset 1.

Moreover, Meta-fair classifier learns a non-linear complex classi-

fier and still performs poorly. Because of Rawlsian fairness in our

objective and defining the sub-population using class label and pro-

tected attribute, FLAT1 learns simple linear classifier and achieves

lower maximum error rate across sensitive sub-populations. Even

in synthetic dataset 2, FLAT1 learns a tilted decision boundary

but Meta-fair learns a vertical decision boundary by ignoring sub-

population with protected attribute value 1. Hence, we see that

Rawlsian fairness objective and the definition of a sub-population

using class label and protected attribute value helps us to do better

than group-fair classifiers by only using second order statistics, and

address typecasting of sub-populations caused by class imbalance.



Figure 6: Decision boundary (black line) of Meta-fair classi-
fier on synthetic dataset 1

Figure 7: Decision boundary (black line) of FLAT1 on syn-
thetic dataset 2

Figure 8: Decision boundary (black line) of Meta-fair classi-
fier on synthetic dataset 2

5.4 Additional fair adaptation results
Here, we show additional fair adaptation results on two datasets.

The details of these datasets are given below.

• COMPAS dataset [5]: In this dataset, the task is to predict

recidivism from an individual’s previous history (e.g. previ-

ous criminal history, prison time, etc.). The dataset has total

5,278 examples. Protected attributes in the dataset is gender

and race.

• German dataset [14]: In this dataset, the task is to predict

whether an individual is a good credit risk. The dataset has

total 1,000 examples. Protected attributes in the dataset is

gender and age.

In Figure 9 and Figure 10, we compare range of FPR and FNR

of each group on Adult and Compas dataset. We use meta-fair

Figure 9: Comparison of range of FPR and FNR on Adult
dataset. The lowest and highest point in a line denotes min-
imum and maximum value of FPR and FNR among all
groups, respectively. The middle point among three points
in a line denotes error rate.

Figure 10: Comparison of range of FPR and FNR on Com-
pas dataset. The lowest and highest point in a line denotes
minimum and maximum value of FPR and FNR among all
groups, respectively. The middle point among three points
in a line denotes error rate.

classifier optimized to get near-equal FNR on each group as our

baseline. As meta-fair classifier maximizes accuracy on combined

data, it ignores one or more sensitive sub-population and ends up

getting wide range of FPR and FNR values on each sensitive sub-

population. However, in the proposed approaches, even though

we are not directly optimizing FPR and FNR on each sensitive sub-

population, we get smaller range compared to meta-fair classifier.

We show the results of Fair Adaptation of Threshold (FAT)

algorithm in Figure 11 . We use second order statistics of each

sub-populations of scores of meta-fair classifier and optimize over

threshold to get group fair classifier using FAT algorithm. In Fig-

ure 11, we see that FAT algorithm improves maximum sensitive

sub-population error rate by around 5-10 % in adult dataset and

COMPAS dataset but in german dataset, FAT improves maximum

sensitive sub-population error rate by around 40-50 % using only

second-order statistics of each sub-populations.

We show experimental results of FLAT1 and FLAT2 on Adult

dataset, COMPAS dataset and German Dataset in Figure 12. We use

second order statistics of features of each sub-population for all



Figure 11: Comparison of FAT algorithmwithmeta-fair clas-
sifier on different datasets and protected attributes

the datasets and learn linear classifier on the features using FLAT1

and FLAT2. For comparison, we learn meta-fair classifier using the

entire data.

From figure 12, we see that FLAT1 and FLAT2 gets around 10-15

% lower maximum sensitive sub-population error rate on Adult

and COMPAS dataset. In German dataset, FLAT1 and FLAT2 gets

around 35-40 % lower maximum sensitive sub-population error

rate. Thus, FLAT1 and FLAT2 achieves lower maximum sensitive

sub-population error rate on all the datasets and all the protected

attributes using only second order statistics of features of each

sub-population.

Rawlsian fairness not only tries to minimize maximum sensitive

sub-population error rate but in the process, it also decrease gap

between error rate among all sensitive sub-populations. In figure

13, we show the comparison of error rate on each sub-population

for neural network, FAT and FLAT2. For the figure, it is clear that

the proposed algorithm achieves decreases the gap between error

rates of sensitive sub-populations.

In figure 14, we show experimental results using False Positive

Rate (FPR) and False Negative Rate (FNR) metric on Adult dataset.

We compare our algorithm with Meta-fair classifier. We see that

FLAT2 decreases gap in both metrics (FPR and FNR) between sensi-

tive sub-populations.

Figure 12: Comparison of FLAT1, FLAT2 algorithm with
meta-fair classifier on different datasets and protected at-
tributes

Figure 13: Group-wise class-wise error Rate on all sensitive
sub-populations



Figure 14: Comparison of FPR and FNR of FLAT2 algorithm
with Meta-fair classifier on Adult dataset

6 CONCLUSION
Starting from the basic principles of Pareto-efficiency and least-

difference in distributive justice, we characterize the Rawls classifier

for minimizing the maximum error rate across all sensitive sub-

populations. We also propose a principled approach for Rawlsian

fair adaptation of black-box deep learning models that does not

require retraining for fairness, while achieving significant improve-

ment over state of the art group-fair baselines.
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A PROOF DETAILS FOR SECTION 3
A.1 Proof for Proposition 4

Proof. The error rate of f on the sensitive sub-population Si j
is given by ri j (f ) = Pr (f (X ) , Y | Y = i,Z = j).

Pr (f (X ) = 1 | Y = i,Z = j)

=

∫
x ∈X

1 (f (x) = 1) Pr (X = x | Y = i,Z = j)dx

=

∫
x ∈X

f (x) Pr (X = x | Y = i,Z = j)dx ,

as f : X → {0, 1}

=

∫
x ∈X

f (x) Pr (Y = i,Z = j | X = x) Pr (X = x)

Pr (Y = i,Z = j)
dx

= EX

[
f (X )

ηi j (X )

pi j

]
= EX

[
f (X ) ui j (X )

]
.

where ηi j (x) = Pr (Y = i,Z = j | X = x) and ηi j (x) and ui j (x) are
the unveil function and the normalized unveil function, respectively,

of Si j as in Definition 2.

r0j (f ) = Pr (f (X ) = 1 | Y = 0,Z = j)

= EX

[
f (X )

η0j (X )

p0j

]
, and

r1j (f ) = Pr (f (X ) = 0 | Y = 1,Z = j)

= 1 − Pr (f (X ) = 1 | Y = i,Z = j)

= 1 −EX

[
f (X )

η1j (X )

p1j

]
= 1 −EX

[
f (X ) u1j (X )

]
.

□

A.2 Proof for Proposition 5
Proof. For any binary classifier f : X → {0, 1},

max

i ∈{0,1}, j ∈[p]
ri j (f )

= max∑
i j ci j ≤1

ci j ≥0, ∀i j

∑
i ∈{0,1}, j ∈[p]

ci jri j (f )

= max∑
i j ci j ≤1

ci j ≥0, ∀i j
EX

f (X )
©­«
∑
j ∈[p]

c0ju0j (X ) − c1ju1j (X )
ª®¬


+
∑
j ∈[p]

c1j , using Proposition 4

= max∑
i j ci j ≤1

ci j ≥0, ∀i j
EX

f (X )
©­«

∑
i ∈{0,1}, j ∈[p]

(−1)ici jui j (X )
ª®¬


+
∑
j ∈[p]

c1j .

□

A.3 Proof for Theorem 6
Proof. We use Proposition 5 to express the Rawls error rate as

minimizing a linear function over binary classifiers f : X → {0, 1},

where the coefficients of the linear function come from solving an

inner maximization. Then we relax our classifier to be real-valued

in [0, 1], and use von Neumann’s minimax theorem to swap the

order of optimization. After the swap, it is easy to see that the

optimal relaxed classifier is actually binary-valued, and it must be

the Rawls classifier. By Definition 3 of the Rawls error rate,

r∗ = min

f :X→{0,1}
max

i ∈{0,1}, j ∈[p]
ri j (f )

= max∑
i j ci j ≤1

ci j ≥0, ∀i j

∑
i ∈{0,1}, j ∈[p]

ci jri j (f )

= min

f :X→{0,1}
max∑
i j ci j ≤1

ci j ≥0, ∀i j
EX


f (X )

©­­­­«
∑

i ∈{0,1}
j ∈[p]

(−1)ici jui j (X )

ª®®®®¬


+
∑
j ∈[p]

c1j , using Proposition 5

≥ min

h:X→[0,1]
max∑
i j ci j ≤1

ci j ≥0, ∀i j
EX


h(X )

©­­­­«
∑

i ∈{0,1}
j ∈[p]

(−1)ici jui j (X )

ª®®®®¬


+
∑
j ∈[p]

c1j , using relaxation h : X → [0, 1]

When ui j (x)’s are known explicitly through the given distribution

D, by von Neumann’s minimax theorem in variables h(x) and ci j ’s,



we get

r∗ ≥ max∑
i j ci j ≤1

ci j ≥0, ∀i j
min

h:X→[0,1]
EX


h(X )

©­­­­«
∑

i ∈{0,1}
j ∈[p]

(−1)ici jui j (X )

ª®®®®¬


+
∑
j ∈[p]

c1j ,

= max∑
i j ci j ≤1

ci j ≥0, ∀i j
EX


hc (X )

©­­­­«
∑

i ∈{0,1}
j ∈[p]

(−1)ici jui j (X )

ª®®®®¬


+
∑
j ∈[p]

c1j ,

where hc (x) = 1
(∑

j ∈[p](−1)
ici jui j (x) ≤ 0

)
.

r∗ ≥ min

f :X→{0,1}
max∑
i j ci j ≤1

ci j ≥0, ∀i j
EX


f (X )

©­­­­«
∑

i ∈{0,1}
j ∈[p]

(−1)ici jui j (X )

ª®®®®¬


+
∑
j ∈[p]

c1j , because hc : X → {0, 1}

= min

f :X→{0,1}
max

i ∈{0,1}, j ∈[p]
ri j (f ), using Proposition 5

=r∗,

Therefore, all the above inequalities must be equalities. Moreover,

let c∗ =
(
c∗i j

)
i ∈{0,1}, j ∈[p]

be the optimal solution of the above.

Hence, the Rawls classifier is given by

f ∗(x) = hc∗ (x) = 1
©­«
∑
j ∈[p]

(−1)ic∗i jui j (x) ≤ 0

ª®¬
= 1

©­«
∑
j ∈[p]

c∗
1ju1j (x) −

∑
j ∈[p]

c∗
0ju0j (x) ≥ 0

ª®¬ ,
and the Rawls error rate is equal to

r∗ =
∑

i ∈{0,1}, j ∈[p]

c∗i jri j (f
∗)

=
∑

i ∈{0,1}, j ∈[p]

c∗i jri j (hc∗ )

= EX

hc∗ (X )
©­«

∑
i ∈{0,1}, j ∈[p]

(−1)ic∗i jui j (X )
ª®¬
 +

∑
j ∈[p]

c∗
1j

= EX

min

0,
∑

i ∈{0,1}, j ∈[p]

(−1)ic∗i jui j (X )


 +

∑
j ∈[p]

c∗
1j .

□

A.4 Proof for Corollary 7
Proof. Assume that the Rawls classifier f ∗ is non-trivial. By

Definition 3 and the Rawls classifier f ∗ characterized by Theorem

6, the Rawls error rate is equal to

r∗ = max

i ∈{0,1}, j ∈[p]
ri j (f

∗) =
∑

i ∈{0,1}, j ∈[p]

c∗i jri j (f
∗).

Thus, the support of the convex combination given by c∗ must be

only over indices ij’s where ri j (f
∗) attains that maximum value.

Equivalently, {ij : c∗i j > 0} must be the same as {ij : ri j (f
∗) =

r∗}. Let ij be the unique index such that c∗i j > 0 and let c∗kl = 0 for

all (k, l) , (i, j). Then

f ∗(x) =


1

(
−c∗

0ju0j (x) ≥ 0

)
≡ 0, if i = 0,

1

(
c∗
1ju1j (x) ≥ 0

)
≡ 1, if i = 1,

because ui j (x) = Pr (Y = i,Z = j | X = x) /Pr (Y = i,Z = j) ≥ 0,

for all i ∈ {0, 1}, j ∈ [p] and x ∈ X. This contradicts the non-

triviality of f ∗. □

A.5 Proof for Corollary 8
Proof. Assume that the Rawls classifier is non-trivial. Suppose

there are no j,k ∈ [p] such that S0j and S1k attain the Rawls rate r∗.
Then the corresponding c∗ that characterizes the Rawls classifier
f ∗ in Theorem 6 must have either {ij : c∗i j > 0} ⊆ {0j : j ∈ [p]}

or {1j : j ∈ [p]}. That is, the indices of the non-zero coordinates
c∗i j must either all have i = 0 or all have i = 1. In that case, the

corresponding f ∗ by Theorem 6 looks like

f ∗(x) =


1

(
−

∑
j ∈[p] c

∗
0ju0j (x) ≥ 0

)
≡ 0, if i = 0,

1

(∑
j ∈[p] c

∗
1ju1j (x) ≥ 0

)
≡ 1, if i = 1,

,

because ui j (x) = Pr (Y = i,Z = j | X = x) /Pr (Y = i,Z = j) ≥ 0,

for all i ∈ {0, 1}, j ∈ [p] and x ∈ X. This contradicts the non-

triviality of f ∗. □

A.6 Proof for Corollary 9
Proof. In the p = 1 case, the Rawls classifier f ∗ in Theorem

6 is given by some coefficients {c∗i1}i ∈{0,1} , with
∑
i j c

∗
i j = 1 and

ci j ≥ 0, for all ij, such that

f ∗(x) = 1
(
c∗
11
u11(x) − c∗

01
u01(x) ≥ 0

)
= 1

(
c∗
11

p11
η11(x) −

c∗
01

p01
η01(x) ≥ 0

)
= 1

(
c∗
11

p11
η11(x) −

c∗
01

p01
(1 − η11(x)) ≥ 0

)
= 1

((
c∗
11

p11
+
c∗
01

p01

)
η11(x) ≥

c∗
01

p01

)
= 1 (η(x) ≥ t) ,

where η(x) = Pr (Y = 1 | X = x), and the threshold t is equal to

t =
(c01/p01)

(c11/p11) + (c01/p01)
.

□



B PROOF DETAILS FOR SECTION 4
B.1 Proof for Theorem 12

Proof. Since we are looking for classifiers fb (x) = 1 (s(x) ≥ b),

Ri j (fb ) = sup

(s,D)∈RMV

Pr (fb (s(X ) , Y | Y = i,Z = j)

=

{
sup(s,D)∈RMV

Pr

(
s(X0j ) ≥ b

)
, for i = 0

sup(s,D)∈RMV
Pr

(
s(X1j ) ≤ b

)
, for i = 1

Therefore, the restricted Rawls error rate is given by the following

optimization.

minimize max

j ∈[p]
Rj over b,R1,R2, . . . ,Rp subject to

sup

(s,D)∈RMV

Pr

(
s(X0j ) ≥ b

)
≤ Rj , ∀j ∈ [p]

sup

(s,D)∈RMV

Pr

(
s(X1j ) ≤ b

)
≤ Rj , ∀j ∈ [p].

We can equivalently rewrite as

maximize min

j ∈[p]
(1 − Rj ) over b,R1,R2, . . . ,Rp subject to

inf

(s,D)∈RMV
Pr

(
s(X0j ) ≤ b

)
≥ 1 − Rj , ∀j ∈ [p]

inf

(s,D)∈RMV
Pr

(
s(X1j ) ≥ b

)
≥ 1 − Rj , ∀j ∈ [p].

Note that to satisfy Rj ≤ 1/2, for all j ∈ [p], we must have µ0j ≤
b ≤ µ1j , for all j ∈ [p]. Using the upper bound in the one-sided

Chebyshev inequality (Proposition 14) and its tightness property,

we can rewrite our optimization problem as follows.

maximize

b,R1,R2, ...,Rp
min

j ∈[p]
(1 − Rj ) subject to

(b − µ0j )
2

σ 2

0j + (b − µ0j )2
≥ 1 − Rj , ∀j ∈ [p]

(µ1j − b)2

σ 2

1j + (µ1j − b)2
≥ 1 − Rj , ∀j ∈ [p].

Equivalently, the above can be written as

maximize

b,R1,R2, ...,Rp
min

j ∈[p]
(1 − Rj ) subject to

1

1 − Rj
− 1 ≥

σ 2

0j

(b − µ0j )2
, ∀j ∈ [p]

1

1 − Rj
− 1 ≥

σ 2

1j

(µ1j − b)2
, ∀j ∈ [p].

Further simplification gives

maximize

b,R1,R2, ...,Rp
min

j ∈[p]
(1 − Rj ) subject to

b ≥ µ0j + σ0j

√
1 − Rj

Rj
, ∀j ∈ [p]

µ1j − σ1j

√
1 − Rj

Rj
≥ b, ∀j ∈ [p].

Note that the constraints arising from negative square root hold

vacuously because µ0j ≤ b ≤ µ1j , for all j ∈ [p]. Now we can

eliminate b from this optimization as follows.

maximize

R1,R2, ...,Rp
min

j ∈[p]
(1 − Rj ) subject to

µ1j − σ1j

√
1 − Rj

Rj
≥ µ0j + σ0j

√
1 − Rj

Rj
, ∀j ∈ [p].

Equivalently, this can be written as

maximize

R1,R2, ...,Rp
min

j ∈[p]
(1 − Rj ) subject to

µ1j − µ0j

σ1j + σ0j
≥

√
1 − Rj

Rj
, ∀j ∈ [p].

Since

√
(1 − a)/a is a monotonically decreasing function for a > 0,

we need to only find

j∗ = argmin

j ∈[p]

µ1j − µ0j

σ1j + σ0j
.

Thus, the optimal ηj∗ is

ηj∗ =

(
1 +

(
σ1j∗ + σ0j∗

µ1j∗ − µ0j∗

)
2

)−1
,

and the optimal threshold b∗ is

b∗ = µ1j∗ − σ1j∗

√
µ1j∗ − µ0j∗

σ1j∗ + σ0j∗

= µ0j∗ + σ0j∗

√
µ1j∗ − µ0j∗

σ1j∗ + σ0j∗
.

□

Here we state the one-sided Chebyshev inequality for complete-

ness. Its bound on the deviation away from the mean of a random

variable plays a key role in our proof.

Proposition 14. For any real-valued random variable X with
mean µ and standard deviation σ , and for any a > 0,

Pr (X ≥ µ + a) ≤
σ 2

σ 2 + a2

Pr (X ≤ µ − a) ≤
σ 2

σ 2 + a2
.

Moreover, for any given a > 0, there exists a distributionX with mean
µ and standard deviation σ such that these inequalities are tight.

B.2 Proof for Theorem 13
Proof. Let s(Xi j ) be a Gaussian with mean µi j ∈ R

d
and covari-

ance matrix Σi j ∈ R
d×d

, respectively, for i ∈ {0, 1} and j ∈ [p]. Let

fw,b denote a linear classifier given by fw,b (x) = 1
(
wT s(x) ≥ b

)
,

for somew ∈ Rd and b ∈ R. Then, for i ∈ {0, 1} and j ∈ [p], we get

Pr

(
fw,b (Xi j ) = 0

)
= Pr

(
wT s(Xi j ) ≤ b

)
= Φ

©­­«
b −wT µi j


Σ1/2i j w





2

ª®®¬ ,



where Φ(·) is the CDF of a standard normal variable N (0, 1).

Similarly, using Φ(t) + Φ(−t) = 1, we have

Pr

(
fw,b (Xi j ) = 1

)
= Pr

(
wT s(Xi j ) ≥ b

)
= Φ

©­­«
wT µi j − b


Σ1/2i j w





2

ª®®¬ .
Thus, assuming that s(Xi j )’s are Gaussians with the given means

and covariance matrices, the restricted Rawls error rate can be

obtained by solving the following optimization problem (where

error rate constraints are replaced by accuracy constraints).

maximize

w,b,r1,r2, ...,rp
min

j
(1 − r j ) subject to

Φ
©­­«
b −wT µ0j


Σ1/2

0j w




2

ª®®¬ ≥ 1 − r j and

Φ
©­­«
wT µ1j − b


Σ1/2

1j w




2

ª®®¬ ≥ 1 − r j , ∀j ∈ [p].

In other words, maximize

w,b,r1,r2, ...,rp
min

j
(1 − r j ) subject to

b ≥ wT µ0j + Φ
−1(1 − r j )




Σ1/2
0j w





2

and

wT µ1j − Φ−1(1 − r j )



Σ1/2

1j w




2

≥ b, ∀j ∈ [p].

Observe that b can be eliminated in the above to get

maximize

w,r1,r2, ...,rp
min

j
(1 − r j ) subject to ∀j ∈ [p],

wT µ0j + Φ
−1(1 − r j )




Σ1/2
0j w





2

≤ wT µ1j − Φ−1(1 − r j )



Σ1/2

1j w




2

,

Moreover, at the optimum (w∗,b∗, r
∗
1
, r∗
2
, . . . , r∗p ), the constraint

must be tight for some j∗ ∈ [p], giving

b∗ = w
T
∗ µ0j∗ + Φ

−1(1 − r j∗ )



Σ1/2

0j∗w∗





2

= wT
∗ µ1j∗ − Φ−1(1 − r∗j )




Σ1/2
1j∗w∗





2

.

Using change of variables κj = Φ−1(1 − r j ) and monotonicity of

Φ(·), we can rewrite our optimization as follows.

maximize

w,κ1,κ2, ...,κp
min

j
κj subject to

wT (µ1j − µ0j ) ≥ κj
(


Σ1/2

1j w




2

+




Σ1/2
0j w





2

)
, ∀j ∈ [p].

We can eliminate κj ’s from this to write it as an equivalent opti-

mization problem only overw .

maximize

w
min

j

wT (µ1j − µ0j )


Σ1/2
1j w





2

+




Σ1/2
0j w





2

, equivalently,

minimize

w
max

j




Σ1/2
1j w





2

+




Σ1/2
0j w





2

wT (µ1j − µ0j )
.

If µ1j = µ0j , for any j ∈ [p], then the optimum κ∗ must be zero.

Otherwise, observe that the above constraints are homogeneous

inw , i.e., wheneverw satisfies these constraints, any non-negative

scalar multiple of w also satisfies them. It is known that the op-

timization problem mentioned above can be solved efficiently in

polynomial time using SOCP (Second Order Cone Programming)

[4] and fractional programming [37]. A general framework to solve

such problem is discussed in [30], which we defer to the full version

of this paper. For now, it can be seen that when the covariance

matrices are diagonal, this problem can be solved using SOCP.

We can assume p ≤ d , that is the number of sensitive groups

(e.g., race, gender) is smaller than the dimensionality of the feature

space. In this case, WLOG, we can rewrite the above optimization

as

minimize

w
max

j




Σ1/2
1j w





2

+




Σ1/2
0j w





2

subject to

wT (µ1j − µ0j ) = 1, ∀j ∈ [p].

There is a nice geometric interpretation for this optimal solution

in the case of spherical Gaussians, i.e., when each covariance matrix

Σi j = σ 2

i j I , for some σi j ≥ 0 and the identity matrix I ∈ Rd×d . Then

the above optimization becomes

minimize

w
max

j

∥w ∥
2
(σ1j + σ0j )

wT (µ1j − µ0j )
.

Or equivalently,

minimize

w
∥w ∥

2
subject to

wT (µ1j − µ0j ) ≥ σ1j + σ0j , ∀j ∈ [p].

Geometrically, this corresponds to the following classical problem

[40]: given a polyhedron, find a point on it that is closest to the

origin in ℓ2 norm. This is a special case of convex quadratic opti-

mization and is known to be solvable efficiently in polynomial time

using the Ellipsoid method as well as the interior point method [10],

and its complexity is similar to that of the support vector machine

problem. □
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