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Abstract

The recently introduced Latent k− Polytope(LkP)
encompasses several stochastic Mixed Member-
ship models including Topic Models. The prob-
lem of finding k, the number of extreme points
of LkP, is a fundamental challenge and includes
several important open problems such as determi-
nation of number of components in Ad-mixtures.
This paper addresses this challenge by introduc-
ing Interpolative Convex Rank(ICR) of a matrix
defined as the minimum number of its columns
whose convex hull is within Hausdorff distance
ε of the convex hull of all columns. The first im-
portant contribution of this paper is to show that
under standard assumptions k equals the ICR of
a subset smoothed data matrix defined from Data
generated from an LkP. The second important
contribution of the paper is a polynomial time al-
gorithm for finding k under standard assumptions.
An immediate corollary is the first polynomial
time algorithm for finding the inner dimension
in Non-negative matrix factorisation(NMF) with
assumptions which are qualitatively different than
existing ones such as Separability.

1. Introduction
Latent variable models have found large number of appli-
cations in the real world. Such models specify a generative
process between the observed variables and a set of under-
lying un-observed variables, often called Latent variables.
Examples of latent variable models include Clustering like
k-means, Finite Mixture models, Topic models (LDA), and
Stochastic block models. In such models learning the pa-
rameters of the generative process is often intractable and
remains an active area of research.
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(Bhattacharyya & Kannan, 2020) suggested Latent k
polytope(LkP), an unifying model which includes all of
the above mentioned instances of latent variable modelis as
special cases. LkP defines a latent polytope K on k vertices
and data is generated by first picking latent points from
this polytope, denoted by columns of a matrix P, and then
perturbing them in an adversarial manner to produce data-
points. The perturbations can be quite large in magnitude,
and the data points can lie quite far from the actual poly-
tope K. The problem of recovering (vertices of) K from
data generated in this manner is in general hard, unless we
make assumptions about K and the data matrix A, each of
whose columns represents one data point. They crystallized
a set of assumptions, which will be referred in the sequel as
standard assumptions, and showed that the vertices of the
polytope K can be provably recovered to an ε approximation
from a data Matrix A satisfying the assumptions.

The algorithm generally applies to all special cases and
results in Model estimation with guaranteed approximation
from a finite sample of data. However, as is usual practice
in Latent Variable models the value of k is assumed known.
For example, most algorithms for k−Means or LDA with
k topics would require the value of k.

In this paper we rely on the geometry of the problem to
find k from the data Matrix A. Straightforward attempts
such as examining the rank etc of A are fruitless because
most of the points in A can be very far from the actual
polytope K. We use two key insights here: (i) Suppose first
we have access to the latent points matrix P instead of A.
In this case, the convex hull of P, CH(P), would be a close
approximation of K. Still it is not clear how to identify k
from the CH(P). (ii) Such a strategy is still not practical as
P is not available. However the eigen structure of A can
provide important clues.

Contributions: This paper addresses some of these chal-
lenges and a summary of contributions are listed below.

• The paper introduces the notion of Interpolative Con-
vex Rank(ICR) of a matrix, and shows that k = ICR
of a subset smoothed data matrix where k is the num-
ber of vertices in LkP (see details in Theorem 1). The
notion of ICR should be of independent interest.

• The paper introduces new techniques based on the hy-
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perplane separator theorem for proving lower bounds
on the ICR of a matrix (see details in Section 3.4).

• Under standard assumptions, the paper gives a polyno-
mial time algorithm for finding the correct value of the
number of vertices of the polytope K (see Theorem 18).
We do this by using the familiar singular value thresh-
olding method, but from a different perspective than
commonly used in numerical analysis.

• In this paper we show that Non-negative Matrix factor-
ization(NMF) is a special case of Latent-k-polytope.
In Theorem 20 we show that the algorithm recovers
the correct inner dimension for NMF under standard
assumptions.

2. Preliminaries and Problem Definition
Notation: For any natural number n we will denote [n] =
{1, . . . , n}. The points will lie in the d-dimensional Eu-
clidean space <d. For a matrix B and index `, we shall
use B·,` to denote the `th column of B. Given a subset S
of columns of B, the notation B·,S refers to 1

|S|
∑
`∈S B·,`.

The spectral norm of B will be denoted by ||B||. The 2-
norm (i.e., Euclidean norm) of a vector v is denoted by
|v|. The rth singular value of a matrix B is denoted by
sr(B). The convex hull of a set of points xi ∈ <d, i ∈ [m],
is denoted by CH({x1, . . . ,xm}) = {

∑m
i=1 αixi|0 ≤

αi,
∑m
i=1 αi = 1}. We abuse notation and use CH(B),

where B is a matrix, to denote the convex hull of the
columns of B. An extreme point of a convex set, C, is
any point, x ∈ C such that it cannot be expressed as
x = βx1 + (1− β)x2, 0 ≤ β ≤ 1,x1 6= x2,x1,x2 ∈ C.
Definition 1. Given two sets S, T ⊆ <d, the Hausdorff
distance dist(S, T ) between them is defined as

dist(S, T ) := max

(
max
x∈S

d(x, T ),max
y∈T

d(y, S)

)
,

where d(z,A), for a point z and a set A ⊆ <d, is defined
as mint∈A |z − t|.

2.1. Review of LkP and Problem statement

In this subsection we introduce relevant definitions and
present the problem statement.

2.1.1. REVIEW OF LATENT-K-POLYTOPE

In this subsection we briefly review the Latent-k-polytope
introduced in (Bhattacharyya & Kannan, 2020).
Definition 2. Let the columns of M ∈ <d×k be the extreme
points of the Latent k Polytope, K = CH(M). The data
matrix A ∈ <d×n is said to be generated from LkP with
parameters M, σ, σ > 0, if there exists a d × n matrix P,
whose columns lie in K, such that σ = ‖A−P‖√

n
.

For each j ∈ [n], A.,j , a column of the data-matrix as the
perturbation of the latent data point P.,j . The parameter
σ, referred in the sequel as perturbation parameter, can be
thought of as a measure of the maximum mean squared per-
turbation in any direction. In previous work (Bhattacharyya
& Kannan, 2020) the problem of learning M from A was ad-
dressed. In general this is an intractable problem but under
certain standard assumptions stated in the next subsection,
a polynomial time algorithm was given for recovering M to
an additive error. The dimension of M, i.e. the value of k,
was assumed to be known.

2.1.2. STANDARD ASSUMPTIONS

(Bhattacharyya & Kannan, 2020) defined a set of assump-
tions on LkP which will be referred in the sequel as Standard
Assumptions. A LkP model with parameters M, σ, and the
data natrix A is said to satisfy the standard assumptions if
the following are true.

• Separation: Every vertex of K is far from the affine
or the convex hull of the remaining vertices of K.

• Proximity: There is a parameter δ ∈ (0, 1) such that
for every vertex of K, there are at least δn points
(columns of A) whose corresponding latent points
(columns in P) are close to the vertex.

• Spectrally Bounded Perturbations: The parameter
σ (= ||A− P ||/

√
n) is much smaller than the size of

K.

The first assumption is on the model,M, the second is on
observed data,A, and last assumption is on the perturba-
tion parameter, σ. In the sequel these assumptions will be
stated more precisely. We prove that the set of standard
assumptions (see Theorem 1) imply that there are k sub-
sets of data each of cardinality δn whose averages nearly
contain in their convex hull the averages of all δn sized
subsets of data.This observation will be leveraged to give
a data driven characterization of k. It is to be noted that
the oft used notion of separability in Non-negative matrix
Factorization(see (Gillis & Luce, 2018)) assumes that there
are k actual data points whose hull nearly contains all data
points. This is restrictive and does not hold even for simple
cases of LkP.

2.1.3. PROBLEM DEFINITON

The objective of the paper is to address the problem of
finding k under the above mentioned assumptions.
Definition 3. Given A generated from LkP and δ, find the
number of extreme points of K.

Note that σ, k,P and M are not given as input parameters.
Only data, A, is available. In (Bhattacharyya & Kannan,
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2020) the emphasis was on computing M given k. In con-
trast this paper attempts to address the problem of finding k
from A under standard assumptions.

2.2. Non-negative Matrix factorization(NMF)

LkP is an interesting geometric alternative to several Unsu-
pervised learning paradigms such as Topic Models, Cluster-
ing and Community Detection (Bhattacharyya & Kannan,
2020). An important aim of this paper is to explore NMF as
a special case of LkP.

Over the last two decades NMF have attracted significant
research interest. In this section we do not review the vast
literature on NMF but point the reader to many readable sur-
veys(e.g. (Gillis, 2014)). However, to aid further discussion
the definition of NMF is briefly reviewed.

Exact NMF seeks a factorization of the data matrix A,
Ad×n = Md×kWk×n where n is the number of data-
points,d is the ambient data dimension and all entries of
M,W,A are assumed to be positive. Each column of M
represents a feature and each column of W denotes the
corresponding weights on the individual features. The pa-
rameter k is often called inner-dimension (Vavasis, 2009).
It is possible that Exact NMF may not exist and bulk of the
research in NMF has been directed towards understanding
the case of approximate NMF defined as follows

Ad×n = Md×kWk×n + N. (Approx-NMF)

Here again W,M are assumed to have non-negative entries.
Each column of N can be thought of as perturbation or
noise.

The Inexact NMF is a special case of Latent-k-Polytope
with the requirement that each column of W should sum
to 1. Each datapoint, A·,j is a perturbation of a point
P·,j =

∑r
l=1 wjlM·,l, lying on the polytope K = CH(M).

The paramater σ depends on the norm of the matrix N.
It is straightforward to see that if we are give data-matrix
A, which satisfies the standard assumptions, and the inner
dimension r, the algorithm mentioned in (Bhattacharyya
& Kannan, 2020) directly applies and one can recover the
features.

Our goal in this paper is to recover the inner-dimension for
NMF.

2.3. Related Literature: finding the number of vertices
of a Latent Polytope

To the best of our knowledge the problem of finding the
number of vertices of the latent polytope has not been
studied. The problem of enumerating all the vertices of
a polytope, described by linear inequalites, is known to
be hard (Khachiyan et al., 2008). The problem described

here is much more complicated as we have access only to
some perturbed points. Since LkP is a geometric construct
it maybe difficult to adopt probabilistic approaches such as
Hierarchical Dirichlet Process (Teh et al., 2006) which have
shown empirical success in many applications. However, to
the best of our understanding it does not provide a guarantee
for finding the correct k, the number of extreme points of
K, from a finite number of samples.

3. Finding the number of vertices of LkP from
data: An interpolative approach

Finding the number of vertices of K, the Latent k Polytope,
defined in Definition 2 is in general a hard problem. Many
open problems of active research such as finding the number
of topics in a topic model are important special cases of
this problem. The challenges in addressing the issue of
determing the number of vertices can be distilled into two
following issues.

Firstly, one needs to establish a suitable quantity which re-
lates the observed data A to the columns of M. Existing
attempts in special cases (e.g.use of Hierarchical Dirichlet
processes for Topic models(Teh et al., 2006)) do not trans-
late into a finite-time algorithm which guarantees the recov-
ery of the correct number of vertices. A well-formulated
quantity which can yield tractable algorithmic insights un-
der realistic assumptions is important aim to have. Secondly,
even if such a quantity is devised, the overall goal of finding
a tractable algorithm is a harder challenge.

In this paper we address both these issues by appealing to
convex geometry. It involves conceptualizing a new no-
tion of Matrix rank (see Subsection 3.1), and following
which we develop a polynomial time algorithm(see Subsec-
tion 3.2).

3.1. Interpolative Convex Rank (ICR) of a Matrix

In this section the concept of Interpolative Convex Rank
(ICR) of a matrix is introduced.

Definition 4. Given a parameter ε > 0, the Interpola-
tive Convex Rank (ICR) of a matrix C ∈ <d×m denoted
ICR(ε,C) = l, where l is the minimum number such that
there exits columns C·,i1 , . . . ,C·,il of C such that

dist(CH(C),CH(C·,i1 , . . . ,C·,il)) ≤ ε

In words it is the minimum number of columns of C whose
convex hull is ε close the convex hull of all columns of C.
A geometric insight behind the definition can be obtained by
observing that if ε = 0 then ICR of C is equal to the num-
ber of extreme points of CH(C). For any ε > 0, ICR(ε,C)
is the minimum number of vertices drawn from the columns
of C whose convex hull approximates the convex hull of
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all the columns of C with error at most ε. Such approxima-
tions have been studied with different notions of distance in
Convex Geometry (Barvinok, 2014; Gruber, 1993).

For any non zero ε, the quantity ICR rank is the smallest
number of extreme points of a polytope whose convex hull
approximates the polytope.

One of the goals of this paper is to relate NMF to LkP.
We argue that Non-Negative Rank (NNR), a often used
measure for number of factors, may not be suited and ICR
is a better alternative. To support this claim we first recall
the definition of NNR((Vavasis, 2009)); we define it through
the inner dimension.

Definition 5. The non-negative rank (NNR) of a matrix is
the minimum inner dimension of a non-negative factoriza-
tion of the matrix.

There is no known provable method for identifying the cor-
rect inner dimension; it is mostly determined by heuristics
(see Section 3 in (Gillis, 2014)). It is folklore that (under
some conditions) NNR reflects or is equal to the correct
inner dimension. However, in many cases NNR can be very
different than inner-dimension. In the Supplememt this is
illustrated with several examples where ICR recovers the
true inner-dimension while NNR could be much lower. The
intuitive reason for the contrast between NNR and ICR in
these examples is that the interpolative property forces ICR
to restrict attention to the columns of the given data ma-
trix, but NNR does not have such restriction and hence can
choose suitable but arbitrary points not from the data-matrix
to yield a low value of NNR.

The use of interpolative assumption for NMF is not new and
is mentioned in (Recht et al., 2012). However the algorithms
assume that the value of inner-dimension is known and using
ICR to characterize the inner-dimension is new.

3.2. Recovering the number of vertices of LkP from
ICR

In this section, we prove the result that the parameter k can
be recovered from the data matrix A as ICR of a suitably
smoothed data matrix Ã obtained from A. As pointed out
earlier, the raw data matrix A does not yield k since CH(A)
can be much larger than K.

We now define the subset smoothed version of A.

Definition 6. (Subset smoothed data matrix) Let Rδ de-
note the collection of all subsets R ⊆ [n], |R| = δn. Then
the subset smoothed data matrix Ã has |Rδ| columns in-
dexed by the elements inRδ . For each R ∈ Rδ , the column
Ã·,R of Ã is same as A.,R, i.e., 1

|R|
∑
`∈RA.,`.

We now state the main result of this section.

Theorem 1. Assume that the input data matrix A is gener-

ated by LkP (as in Definition 2). Let ρ > 0, δ ∈ (0, 1) and
suppose the following three assumptions are satisfied

1. Every vertex M.,` of K satisfies the following condi-
tion:

d(M.,`,CH({M·,`′ : `′ 6= `}) ≥ 7ρ. (1)

2. For every ` ∈ [k], there exists a subset S` ⊆ [n] of size
δn such that

|M.,` − P.,S` | ≤
ρ

30
(2)

3. The perturbation parameter σ is defined as follows

σ√
δ
≤ ρ

36
. (3)

Then the ICR(ρ/3, Ã) = k.

Proof. The proof consists of computing an upper-bound
(see Lemma 3) and a lower bound (see Corollary 8).

Remarks: Before proceeding to give formal details we
wish to make some remarks to convey the main intuitions.
The assumptions are re-statements of the three standard
assumptions defined in Subsection 2.1.2. We would like
to note that the first condition (1) above is much weaker
than requiring that M.,` is far from the affine hull of the
other columns of M.,`, made in (Bhattacharyya & Kannan,
2020). We now give some intuitions behind the proof. It
proceeds in two parts. In the upper bound proof, we show
tha ICR(ρ/3, Ã) is at most k (see Lemma 3). The idea of
the proof is as follows. For R ∈ Rδ, A.,R and P.,R are
close to each other (this is where the subset smoothening
operation helps). Now, P.,R lies inside K, and so can be
expressed as a convex combination of the columns M.,` of
M, each of which is close to the corresponding point A.,S` ,
where S` is the subset defined in (2). It follows that A.,R is
close to the convex hull of the points {A.,S` , ` ∈ [k]}. This
exhibits a convex polytope on k vertices which are close to
CH(Ã), proving the upper bound.

The lower bound part of the proof (see Corollary 8) is harder
and involves new tools from Convex Geometry. Suppose
there is a subset of points W whose convex hull is close to
CH(Ã). It is not hard to show that the convex hull of W
is also close to CH(M) (again using subset smoothening).
Now we show that we can partition (a slightly larger set than)
CH(M) into k parts by cutting it with suitable hyperplanes
obtained from the Separating Hyperplane Theorem, and W
must have a non-empty intersection with each of these parts.
This shows that |W | must be at least k.
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3.3. Upper Bound Proof

Let H denote CH(Ã). Let H ′ denote the convex hull of
{A.,S` , ` ∈ [k]}, where S` ∈ Rδ are as defined in (2). We
show that H is within Hausdorf distance ρ/3 of H ′. Since
H ′ ⊆ H , it suffices to show that for every point in H , there
is a point in H ′ within distance at most ρ/3. H is a convex
set and d(x,H ′) is a convex function of x, so the maximum
of d(x,H ′) over H is attained at a vertex of H . Hence it
suffices to show that for each of the points A.,R, R ∈ Rδ,
we have d(A·,R, H

′) ≤ ρ/3.

The proof proceeds by first showing that for any R ∈ Rδ,
the vector A.,R is close to P.,R, in fact within distance
at most σ/

√
δ. Now, any vector of the form P.,R can be

written as a convex combination of the vertices of K, i.e.,
the vectors M.,`, ` ∈ [k]. The same argument also shows
that each of the vectors M.,` is close to the corresponding
vector A.,S` . Thus A.,R is close to a convex combination
of the vectors A.,S` , ` ∈ [k]. We now prove these claims
formally.

Claim 2. For all S ⊆ [n], |S| ≥ δn, |A.,S − P.,S | ≤ σ√
δ
.

Proof. We first note that |A.,S − P.,S | ≤ ||A−P||/
√
|S|.

Indeed, let u be the unit vector which is 1/
√
|S| on coordi-

nates corresponding to S, 0 otherwise. Then

|A.,S − P.,S | =
1√
|S|
· |(A−P)u| ≤ ||A−P||√

|S|
.

The claim now follows by using the definition of σ, i.e.,
||A−P|| = σ

√
n.

We are now ready to show the upper bound result.

Lemma 3. Under the conditions of Theorem 1,
ICR(ρ/3, Ã) is at most k.

Proof. Fix an R ∈ Rδ. Since P.,R ∈ K, it can be written
as a convex combination

∑
`∈[k] λ`M.,` of the vertices of

K. Then, we have∣∣∣∣∣∣A.,R −
∑
`∈[k]

λ`A.,S`

∣∣∣∣∣∣ ≤ |A.,R − P.,R|+
∑
`

λ`

(
|M.,`

− P.,S` |+ |A.,S` − P.,S` |
)
≤ 2σ√

δ
+

ρ

30
≤ ρ/3,

since the first and third term (in the RHS of the first in-
equality) are each at most σ/

√
δ by the Claim 2 and the

second term is at most ρ/30 by (2). This shows that that the
ICR(ρ/3, Ã) is at most k.

Figure 1. Illustration of the proof of Theorem 5: the matrix R has
four points. The lightly shaded half-space around R.,` denotes V`,
whereas the darker shaded region around the same vertex denotes
Q`.

3.4. Lower Bound Proof

We now prove the more difficult part of Theorem 1, i.e.,
ICR(ρ/3, Ã) cannot be strictly less than k. We will prove
a stronger assertion, namely, that there is no set of k − 1
points in <d whose convex hull is within distance ρ/3 of
H, where H = CH(Ã).

Assume, for sake of contradiction, that there exist points
w1, . . . , wk−1 ∈ <d such that

dist(H,CH({w1, . . . , wk−1})) ≤ ρ/3. (4)

Recall that K = CH(M). Let W0 denote
CH({w1, . . . , wk−1}). We first begin by showing
that dist(K,W0) is at most ρ. The intuition is that the
Hausdorff distance between H and K is small – the
argument follows along the same lines as in the upper
bound proof. It follows from (4) that dist(K,W0) is also
small. We give the complete proof of the following result in
the supplementary material.

Claim 4. Let W0 denote the convex hill of the points
w1, . . . , wk−1. Then, dist(K,W0) ≤ ρ.

The desired contradiction follows easily from the above
claim and the following result:

Theorem 5. Let W be a set of points such that the
Hausdorff distance between the the convex hull of W
and that of the columns of M is at most ρ, i.e.,
dist(CH(W ),CH(M)) ≤ ρ. Then |W | ≥ k.

The intuition behind the proof is as follows: each vertex
M.,` of CH(M) is far from the convex hull formed by rest
of the columns of M, and hence we can find a separating
hyperplane which separates M.,` from CH(M−`) by some
large enough margin (see the region V` in Figure 1). We
define a further refinement of this region, shown as Q` in
Figure 1. The proof consists of two conceptual steps: (i) we
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show that the regions Q` are disjoint for distinct columns
M.,` of M, and (ii) we argue that each of the regions Q`
must contain at least one vertex of W . Since there are k
columns in M, this would implies that |W | must be at least
k.

Proof. For two subsetsA andB of points in<d, define their
Minkowski sum, A+B, as {a+ b : a ∈ A, b ∈ B}. For an
index ` ∈ [k], let M−` denote the matrix M with column
` removed. Since the columns of M satisfy condition (1),
this implies that (here B denotes the unit ball)

[M.,` + 7ρB] ∩ CH(M−`) = ∅.

Therefore, the Separating Hyperplane Theorem from Con-
vex Geometry implies that there is a unit vector v(`) such
that for all `′ 6= `,

v(`) ·M.,` > v(`) ·M.,`′ + 7ρ (5)

For an index ` ∈ [k], let V` denote the set

V` := {x : v(`) · x > v(`) ·M.,` − 2ρ},

and define Q` := (CH(M) + ρB) ∩ V`.

Claim 6. For every ` ∈ [k], there is a point w ∈ W such
that w ∈ Q`.

Proof. Assume for the sake of contradiction that there
is an index ` ∈ [k] such that Q` ∩ W = ∅. Since
dist(CH(W ),CH(M)) ≤ ρ, W ⊆ CH(M) + ρB, and so
it must be the case that V` ∩W = ∅. The definition of V`
implies that for every w ∈W ,

w · v(`) ≤M.,` · v(`) − 2ρ.

Consequently, for every point y ∈ CH(W ),

v(`) · y ≤ v(`) ·M.,` − 2ρ. (6)

Since dist(CH(M),CH(W )) ≤ ρ, there is a point y ∈
CH(W ) with |y −M.,`| ≤ ρ. But this contradicts (6). This
proves the claim.

So, we must have that for each ` ∈ [k], Q` ∩W is non-
empty. We now show that the sets Q` are disjoint, which
will yield the desired result.

Lemma 7. The sets Q`, ` ∈ [k] are mutually disjoint.

Proof. Suppose, for the sake of contradiction, that there
is a point z ∈ Q` ∩ Q`′ for distinct indices `, `′. Since
z ∈ CH(M) + ρB, there is a point y ∈ CH(M), with
|y − z| ≤ ρ.

So y can be written as a convex combination∑
`′′∈[k] α`′′M.,`′′ . We now also write y as

y = α`M·,` + (1− α`)x , x ∈ CH(M·,`′′ : `′′ 6= `) (7)

Inequality (5) implies that v(`) · x < v(`) ·M·,` − 7ρ. So,

v(`) · y < v(`) ·M·,` − (1− α`)7ρ.

Since v(`) is unit vector and |y − z| ≤ ρ,

v(`) · z ≤ v(`) ·M·,` − (1− α`)7ρ+ ρ.

But since z ∈ V`, we have by the definition of V`

v(`) · z > v(`) ·M·,` − 2ρ.

Thus by the last two inequalities, α` > 4/7 > 0.5. A
similar argument shows that α`′ > 0.5. But this is not
possible because the quantities α`′′ are non-negative and
add to 1. This proves the result.

Combining Lemma 7 and Claim 6, we see that |W | ≥ k.
This proves the desired theorem.

As a corollary, we get the lower bound result:

Corollary 8. Under the assumptions of Theorem 1,
ICR(ρ/3, Ã) ≥ k.

Proof. Combining Theorem 5 and Claim 4, we see that ifW
is any set of points for dist(CH(Ã),CH(W )) ≤ ρ/3, then
|W | ≥ k. By definition, if ICR(ρ/3, Ã) = k′, then there
is a set of k′ points whose convex hull is within Hausdorff
distance ρ/3 of CH(Ã). Therefore, k′ ≥ k.

It is worth noting that the matrix Ã has exponential (in n)
number of columns, and so cannot be used directly by an
efficient algorithm. We have given an algebraic characteri-
zation of the number of vertices of K in terms of ICR, but
no polynomial time algorithm is known to find ICR. In the
next section, we give a polynomial time algorithm to find
the number of vertices of K.

4. Algorithm for finding the number of
vertices of the latent polytope

In this section, we consider a slightly stronger set of standard
assumptions than those in Theorem 1. We prove that if the
input points satisfy these conditions, then we can recover
the correct value of k in polynomial time. In fact, we will
show that there is a polynomial time computable threshold
τ such that

k = Maxr : sr(A) ≥ τ.
Singular value thresholding is a well known procedure
which yields provable guarantees in many applications (Cai
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et al., 2010; Chatterjee, 2015; Donoho & Gavish, 2014).
However the techniques considered in the literature do not
apply to the problem at hand and hence new methods are
warranted.

The main difficulty in choosing such a threshold τ is that
it cannot be kept at some suitable multiple of the largest
singular value of the data matrix A: the matrix A may be ill-
conditioned, and so the largest singular value may not give
us any information about the parameter k. Instead, we write
down a convex program whose output is used for deciding
this threshold τ . Once we have the correct value of k, we
can use ideas based on ICR to recover the actual vertices of
M (see for example Algortihm 2 and Theorem 20).

Algorithm 1 Algorithm for finding the number of extreme
points of K.

Input: d× n data matrix A and a parameter δ ∈ (0, 1).
Let opt be the optimal value of the convex program (12).

Let k? be the maximum value of k′ ∈ [d] such that the
singular value sk′(A) ≥ δ2opt/8.
Output k?.

We now state the main result of this section. We give some
definitions. For a subspace V and a point x, let proj(x, V )
denote the orthogonal projection of x on V . For a subset
S of points, let Null(S) denote the subspace orthogonal to
the linear span of S.
Theorem 9. Suppose that the input data satisfies the fol-
lowing assumptions. There exists a δ ∈ (0, 1) such that

Every vertex M.,` of K satisfies the following condition:

|proj (M.,`,Null (M \M.,`))| ≥ δ|M.,`|. (8)

The LHS above is same as the distance of M.,` from the
affine hull of the other columns of M.

For S` := {j : |M.,` − P.,j | ≤
4σ√
δ
}, |S`| ≥ δn (9)

σ ≤ δ3 min
`
|M.,`|/20. (10)

Further, assume that all the entries of M are non-negative.
Then, given δ and the data matrix A, Algorithm 1 outputs
the correct value of k.

Note that the LHS of condition (8) is smaller than the LHS
of the corresponding constraint (1).

The following result follows as corollary of the above result.
It shows that the ICR of the subset smoothed data matrix Ã
is equal to the number of vertices k of K. Details are given
in the supplementary material.

Lemma 10. Suppose the conditions (8), (9) and (10)
stated in Theorem 9 are satisfied by the input data. Then
ICR(6σ/

√
δ, Ã) = k.

4.1. Proof of Theorem 9

We now proceed to prove Theorem 9. There are two phases
in Algorithm 1. In the first phase, we estimate min` |M.,`|
by writing a suitable convex program. We use this estimate
as a threshold for the singular values of A to determine the
value of k.

The convex program is as follows (recall that A is the data
matrix generated from LkP defined in Definition 2):

min opt := |A · x| (11)∑
j∈[n]

xj = 1, 0 ≤ xj ≤ 1/(δn),∀j ∈ [n]. (12)

We now show that the optimal value of the convex program
can be used to approximate min` |M.,`| within a constant
factor.

Lemma 11. Let ρ0 := min` |M.,`|, and opt be defined in
(11). Then

ρ0/(2k) ≤ opt ≤ 2ρ0.

Proof. The proof is done by two subclaims, each of which
prove one of the above inequalities. Let x? denote the vector
which satisfies opt = |A · x?|.

Claim 12. |A · x?| ≥ ρ0/(2k).

Proof. The vector P · x? is a convex combination of the
columns of P. Each column of P can be expressed as
a convex combination of the columns of M. It follows
that P · x? is a convex combination of the columns of M,
i.e., it is of the form

∑
j∈[k] αjM.,j , where αj’s are non-

negative and sum to 1. It follows that there is an index j with
αj ≥ 1/k. Since all the columns of M are non-negative,
P · x is component-wise at least M.,j/k, and so, has length
at least ρ0/k. Finally,

|A ·x| ≥ |P ·x|−||P−A|| · |x| ≥ ρ0/k−σ/δ
(10)
≥ ρ0/(2k),

where the second last inequality follows from the fact that
xj ≤ 1/(δn) and (10).

Claim 13. |A · x?| ≤ 2ρ0

Proof. Let ρ0 be |M.,`|. Define a feasible solution x to the
convex program P as follows: xj = 1/(δn) if j ∈ S`, 0
otherwise. Observe that |x| = 1√

δ
√
n
. Now,

|A·x| = |A.,S` | ≤ |P.,S` |+
σ√
δ
≤ |M.,`|+

4σ√
δ

+
σ√
δ
≤ 2ρ0,
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where the first inequality is by Claim 4 and the second by
(9).

The above two results show that ρ0/(2k) ≤ opt ≤ 2ρ0.

We now use opt as a threshold for the singular values of A,
and show that k can be recovered from this threshold. This
will also prove correctness of Algorithm 1, and hence yield
a provable data determined threshold for finding the ICR of
A.

Theorem 14. Define k? = maxk′∈[d] : sk′(A)/
√
n ≥

δ2opt/8. Then k = k?.

Proof. In order to prove this result, we need to estimate
sk(A) and sk+1(A). We shall do this by estimating the
singular values of some related matrices. We begin by
bounding the singular values of M.

Claim 15. sk(M) ≥ δρ0√
k
, whereas sk+1(M) = 0.

Proof. The second statement follows trivially since M has
only k columns, and so is a rank k matrix. For the first
statement, observe that

sk(M) = min
x:|x|=1

|Mx|.

Let x be any unit vector in <k. There must be
a coordinate ` ∈ [k] such that |x`| ≥ 1√

k
. Now,

|Mx| =
∣∣∣∑j∈[k] xjM.,j

∣∣∣ ≥ |x`| · |proj(M.,`,Null(M \
M.,`)| ≥ δρ0√

k
, where the last inequality follows from condi-

tion (8).

Let S1, . . . , Sk be subsets of [n] guaranteed by condition (9).
We assume that each of these subsets have size exactly δn
(otherwise we remove some elements from them). Note that
these sets are mutually disjoint, since (8) and (10) imply
that for any two distinct `, `′ ∈ [k], |M.,` −M.,`′ | > 8σ√

δ
.

Let B = (P.,S1 | P.,S2 | . . . |P.,Sk). We relate sk(B) and
sk(M).

Claim 16. sk(B) ≥ sk(M)− 4σ
√
k√
δ
≥ δρ0

2
√
k
.

Proof. Condition (9) implies that ||B−M|| ≤ 4σ
√
k√
δ
. This

implies the first inequality in the claim, since we have (from
Linear Algebra), sk(B) ≥ sk(M)−·||M−B||. The second
inequality follows from Claim 15 and (10).

We now relate sk(B) and sk(P).

Claim 17. sk(P) ≥
√
δn · sk(B) ≥ δ1.5ρ0

2
√
k
·
√
n.

Proof. We shall exhibit a subspace of dimension k such that
for any unit vector x in this subspace, |P·x| ≥

√
δn·sk(P).

This will prove the desired result by the Max-Min theorem
of Linear Algebra which states:

sk(B) = max
V :dim(V )=k

min
x∈V,|x|=1

|Px|.

For each index ` ∈ [k] defined a unit vector e` ∈ <n as
follows:

(e`)j =

{ 1√
δn

if j ∈ S`
0 otherwise

Since the sets S1, . . . , Sk are pair-wise disjoint, the vectors
e`, ` ∈ [k], span a subspace U of dimension k (in fact these
vectors are form an orthonormal family of k vectors).

Now consider any unit vector v =
∑
j∈[k] βjej . Since ej’s

are orthonormal,
∑
j β

2
j = 1. Now,

P · v =
∑
j∈[k]

βj
√
δn · P.,Sj =

√
δn ·P · y,

where y is the vector whose jth coordinate is βj . Since y is a
unit vector, |P · y| ≥ sk(B). This implies the desired result
(the last inequality in the claim follows from Claim 16).

Finally, we give bounds on the singular values of the data
matrix A.

Lemma 18. sk(A) ≥ δ2opt/8 > sk+1(A).

Proof. Since ||P−A|| ≤ σ
√
n, |sr(P)/

√
n−sr(A)/

√
n|

is at most σ for any r ∈ [d]. Using this fact and Claim 17,
we see that

sk(A)/
√
n ≥ δ1.5ρ0

4
√
k
≥ δ1.5opt

8
√
k
≥ δ2opt

8
,

where the second inequality follows from Claim 13, and
the last inequality follows from the fact that δ ≤ 1/k.

Similarly, (since sk+1(P) = 0)

sk+1(A)/
√
n ≤ σ

(10)
≤ δ3ρ0/20 ≤ kδ3opt/10

≤ δ2opt/10 < δ2opt/8,

where the third inequality follows from Claim 12.

This proves that k? = k.

Thus we have shown that k? = k. This proves that we
can recover the number of vertices in the latent polytope
if the conditions (8), (9), (10) are satisfied, hence proving
Theorem 9.
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4.2. Finding a non-negative matrix factorization
without the knowledge of inner-dimension

Given A finding an approximate non-negative factoriza-
tion is intractable. In a long line of work starting from
(Arora et al., 2012) several ingenious algorithms have
emerged (Recht et al., 2012; Gillis & Vavasis, 2014; Rong
& Zou, 2015) which using Separability, first introduced by
(Donoho & Stodden, 2003a), provably recover an approxi-
mate factorization. These procedures assume that the inner-
dimension k is known. By imposing the assumption that
Every data point is approximately a non-negative combina-
tion of k data points, several algorithms (e.g. (Ambikapathi
et al., 2013; Fu et al., 2015; Gillis & Luce, 2018)) can find
minimum such k by solving Linear or Convex programs.
However the assumption is too strong to hold for LkP and
can be shown to fail in many simple instances. To the best
of our knowledge there are no known algorithms which can
provably recover the inner-dimension and the factorization
under the conditions of LkP.

In this section we state polynomial time procedures which
provably recovers the factorization(the matrix M) along
with k, the inner-dimension (see equation (Approx-NMF)).
Noting that Approx-NMF is a special case of LkP, the
application of Algorithm 1 recovers k.

It is important to note that the standard assumptions stated
earlier are different than separability. In fact conditions (9)
and (10) of Theorem 9, are analogous to assumptions which
have been used for NMF, namely, nearly pure records and
noise assumptions of of (Bhattacharyya et al., 2016). In-
stead of the Well-Separatedness condition (8) of Theorem 9,
we make the following “Dominant Features” assumptions
which is similar to, but, weaker than their assumption with
the same name.

Dominant Features This stipulates that for ` ∈ [k], there
is a set T` of “dominant features” of column ` of M. More
precisely,

∃T1, T2, . . . , Tk disjoint : ∀`,
∑
i∈T`

Mi,` ≥ 4
∑
i∈T`

∑
`′ 6=`

Mi,`′ .

Lemma 19. The Dominant Features assumption above im-
plies condition (8) of Theorem 9.

The proof is based on diagonal dominance and is given
in the Supplementary Material. Finally we state the main
theorem, which gives a procedure, described in Algorithm
2, for finding close approximations to the vertices of M.

The algorithm is a simplified version of (Bhattacharyya &
Kannan, 2020), requiring new proofs. At the outset, the
algorithm finds the left k− singular subspace V of A and
projects data points onto V . It runs in k iterations and
in each iteration, finds an approximation to a new vertex

of K. This approximation is of the form A·,R for some
R ⊆ [n], |R| = δn. R is obtained as follows: We pick a
random vector ur in V ∩ the null space of the vectors found
so far and set: R ← arg maxR |u · A·,R|, noting that the
optimization can be carried out in polynomial time. Indeed,
the optimization to find R is a 1-dimension problem. We
project all the columns A·,j along ur (note that this is the
matrix A which has only n columns). Now the optimal
R would be either the δn columns of A with the highest
dot product with ur or the smallest, and so, can be done in
polynomial time.

Theorem 20. Assuming conditions (9) and (10) and also
the Dominant Features assumption, Algorithm 1 finds k in
polynomial time. Using this value of k, Algorithm 2 finds k
points, each of which is within O(k4σ/δ1.5) distance of a
unique vertex of M.

The proof is given in the supplementary material. The above
theorem yields an NMF without knowing the value of inner-
dimension. A detailed discussion of the relative strengths
and weakness of various assumptions is beyond the scope of
this paper and will be discussed elsewhere. It suffices to stay
that the assumptions, techniques and the results presented
in this section are novel contributions to NMF.

Algorithm 2 Algorithm for finding the approximations to
the vertices of K.

Input: d×n data matrix A and a parameter δ ∈ (0, 1), k.

Let V be the subspace of <d spanned by the top k left
singular vectors of A.
Let Â.,j be the projection of A.,j on V, for j = 1, . . . , n.
for r = 0, . . . , k − 1 do
ur ← unit vector chosen uniformly at random from the
subspace Ur := V ∩Null(Â.,R1

, . . . , Â.,Rr ).

Rr+1 ← arg maxR∈Rδ |u · Â.,R|.
end for
Output Â.,R1

, . . . , Â.,Rk .

5. Conclusions
This paper uses Convex geometry in finding the number
of extreme points of the Latent-k-polytope. This settles
several interesting problems related to finding the number
of components in Mixed-membership models.
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Supplementary Material: Finding k in Latent k polytope

A. Missing proofs of Section 3.2
We first give the proof of Claim 4, which is restated here.
Claim 4. Let W0 denote the convex hill of the points
w1, . . . , wk−1. Then, dist(K,W0) ≤ ρ.

Proof. As in the upper bound proof, it is enough to show
that for every ` ∈ [k], d(M.,`,W0) ≤ ρ, and that for wj ∈
W0, d(wj ,M) ≤ ρ.

Fix an index ` ∈ [k]. We know by (2) that |M.,` − P.,S` | ≤
ρ
30 , and Claim 2 implies that |A.,S` − P.,S` | ≤ σ√

δ
. There-

fore, |M.,` −A.,S` | ≤ ρ/3 (using (3)). Finally, the fact that
dist(H,W ) ≤ ρ/3 implies that there is a pointw ∈W such
that |A.,S` −w| ≤ ρ/3. It follows that |M.,` −w| ≤ 2ρ/3..

Now we show the other direction. Fix an index ` ∈ [k − 1].
By (4) and the upper bound result that dist(H,H ′) ≤ ρ/3,
it follows that d(w`, H

′) ≤ 2ρ/3. Therefore there exist
non-negative λ`′ , `′ ∈ [k], adding up to 1 such that |w` −∑
`′∈[k] λ`′A.,S`′ | ≤ 2ρ/3. Condition (2) and Claim 2 now

imply that

|w` −
∑
`′∈[k]

λ`′M.,`′ | ≤ 2ρ/3 +
ρ

30
+
σ

δ

(3)
≤ ρ.

Thus, d(w`,M) ≤ ρ.

B. Missing proofs of Section 4
We prove Lemma 10.
Lemma 10. Suppose the conditions (8), (9) and (10)
stated in Theorem 9 are satisfied by the input data. Then
ICR(6σ/

√
δ, Ã) = k.

Proof. We first show that ICR(6σ/δ, Ã) ≤ k. The proof is
very similar to the argument in Section 3.3. Fix an R ∈ Rδ .
Since P.,R ∈ K, it can be written as a convex combination∑
`∈[k] λ`M.,` of the vertices of K. Then, we have∣∣∣∣∣∣A.,R −

∑
`∈[k]

λ`A.,S`

∣∣∣∣∣∣ ≤ |A.,R − P.,R|+
∑
`

λ`|M·,` − P.,S` |

+
∑
`

λ`|A.,S` − P.,S` |

≤ 2σ√
δ

+
4σ√
δ
≤ 6σ√

δ
,

since the first and third term (in the RHS of the first
inequality) are each at most σ/

√
δ by the Claim 2 and

the second term is at most 4σ√
δ

by (9). This shows that

ICR(6σ/
√
δ, Ã) ≤ k.

We now show the lower bound ICR(6σ/δ, Ã) ≥ k. Sup-
pose for the sake of contradiction that there exist k−1 points
w1, . . . , wk−1 such that

dist(CH(Ã),CH({w1, . . . , wk−1})) ≤ 6σ/
√
δ.

The following claim is similar to Claim 4. Let W0 denote
CH({w1, . . . , wk−1}).

Claim 21. dist(K,W0) ≤ 17σ/
√
δ.

Proof. As in the upper bound proof, it is enough to show
that for every ` ∈ [k], d(M.,`,W0) ≤ ρ, and that for wj ∈
W0, d(wj ,M) ≤ ρ.

Fix an index ` ∈ [k]. We know by (9) that |M.,` − P.,S` | ≤
4σ√
δ

, and Claim 2 implies that |A.,S` − P.,S` | ≤ σ√
δ

. There-
fore, |M.,` − A.,S` | ≤ 5σ√

δ
(using (10)). Finally, the fact

that dist(CH(Ã),W ) ≤ 6σ/
√
δ implies that there is a point

w ∈ W such that |A.,S` − w| ≤ 6σ/
√
δ. It follows that

|M.,` − w| ≤ 11σ/
√
δ.

Now we show the other direction. Fix an index ` ∈ [k − 1].
Since dist(W0,CH(Ã)) ≤ 6σ/

√
δ, d(w`,CH(Ã)) ≤

6σ/
√
δ. The argument used above for proving upper bound

shows that d(CH(Ã),CH({A.,S1 , . . . , A.,Sk}) ≤ 6σ/
√
δ.

It follows that d(w`,CH({A.,S1 , . . . , A.,Sk}) ≤ 12σ/
√
δ.

Therefore there exist non-negative λ`′ , `′ ∈ [k], adding up
to 1 such that |w` −

∑
`′∈[k] λ`′A.,S`′ | ≤ 12σ/

√
δ. Condi-

tion (9) and Claim 2 now imply that

|w` −
∑
`′∈[k]

λ`′M.,`′ | ≤
12σ√
δ

+
4σ√
δ

+
σ√
δ

=
17σ√
δ
.

This proves the desired result.

Now observe that if we set ρ := 17σ/
√
δ, then the RHS

of (8) is at least (using (10))

30σ

δ2
≥ 7ρ,
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since δ ≤ 0.5 (assuming k ≥ 2). So the conditions in
Theorem 5 hold with R = M,W = {w1, . . . , wk−1} and ρ
as defined above. But then Theorem 5 implies that |W | ≥ k,
a contradiction. This proves that ICR(6σ/δ, Ã) ≥ k.

We have shown that ICR(6σ/δ, Ã) has to be at least and at
most k, and so, must be equal to k.

C. Applications to Exact NMF
In this section, we show that the notion of ICR in the context
of NMF reveals the inner dimension of the data matrix.

As mentioned in the introduction, the data matrix A consists
of non-negative entries, and we seek a factorization into
non-negative matrices M,W of the form (subscripts denote
dimensions of the matrices):

Ad×n = Md×kWk×n.

The parameter k above is called the inner dimension of the
factorization A = MW. Note that neither the factorization,
nor, even the value of k is unique. For example, there are
always the trivial NMFs: A = AI = IA which have inner
dimensions n, d respectively. In what follows, we motivate
our definition of ICR by showing that in the ideal situation
of exact NMF, with a condition called separability (see
below), ICR yields the correct inner dimension. We first
show that the columns of the above matrices can be assumed
to be normalized to 1.

Fact 22. In seeking non-neg factorization of A into MW,
we may assume without loss of generality that each column
of A,W,M sums to 1.

Proof. Suppose A = MW. Let ∆` :=
∑d
i=1Mi,` denote

the sum of all the entries in the `th column of M. Dividing
`th column of M and multiplying `th row of W by ∆`

leaves the product MW unchanged.

The above transformation ensures that each column of M
adds to 1. Now, for each j ∈ [n], the sums of entries in the
columns A.,j and W·,j are identical, call this quantity γj .
By dividing all the entries in the jth column of A and W
by αj ensures that the column sums in both A and W are
also 1.

We shall call a NMF A = MW normalized if the columns
of each of these matrices sum to 1. The above claim shows
that we can assume this condition without loss of generality.
Henceforth, we shall seek such normalized NMF only. Once
normalized, a column of A is a non-negative combination
of other columns iff it is also a convex combination.

We now define the notion of separability.

Definition 7. An NMF A = MW of inner dimension k is
said to be separable if each unit vector e1, e2, . . . , ek ∈ <k
is a column of W.

The result below presents a situation where the notion
of ICR is more appropriate than non-negative factoriza-
tion. For sake of brevity, we shall use ICR(B) to denote
ICR(0,B) for a matrix B.

Lemma 23. Suppose A has a normalized, separable
factorization MW with inner dimension k and also
ICR(0,M) = k. Then, ICR(0,A) equals k.

Further, for each k ≥ 4, there is an A with NNR(A) = 3,
but there is a normalized, separable NMF of A of inner
dimension k.

Remark: Note that ICR(M) = k is without loss of gen-
erality, since we are assuming that the columns of M are
extreme points of CH(M). We also note that the condi-
tion of Separability was introduced in (Donoho & Stodden,
2003b) especially to get at the “correct” NMF. But for get-
ting the correct NMF, they also needed additional conditions
besides separability. What the simple Lemma here shows
is that indeed separability alone is sufficient to pin down k
(not necessarily the factorization) in the ideal situation of
exact NMF. In the more realistic approximate-NMF situa-
tion, Theorem 1 shows a similar result, but the proof is not
nearly that simple.

Proof. ICR(A) is at most k since there is a separable fac-
torization of inner dimension k. Supposed for sake of con-
tradiction that ICR(A) ≤ k−1. So, there are k−1 columns
of A whose convex hull contains all the columns of A. This
implies the number of extreme points of CH(A) is at most
k−1. But CH(A) = CH(M) since the factorization is sepa-
rable and since ICR(M) = k, the number of extreme points
of CH(M) is k producing a contradiction. This proves the
first assertion in the lemma.

For the second assertion in the lemma, consider the follow-
ing example. We set d = 2, k = 100 and the columns of M
are the 100 vertices of a regular 100-polygon of side 1 in
the plane whose center is (106, 106). It is contained in the
triangle of side 10000 centered at (106, 106), so NNR is at
most 3.

D. Applications to Inexact NMF
In this section, we assume that the latent data matrix P
can be written as MW, but the actual data matrix A is
a perturbation of P. In this sense, NMF is a special case
of LkP. We prove Theorem 9 in several parts. We first
show (in Corollary 25) that under suitable assumptions,
Algorithm 1 finds the correct value of k. Subsequently, in
Theorem 26, we show that Algorithm 2 uses this value of k
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to find approximations to the vertices of M.

We now restate Lemma 19 formally and prove it.

Lemma 24. Suppose the Dominant Features assumption as
stated below holds:

∃T1, T2, . . . , Tk disjoint : ∀`,
∑
i∈T`

Mi,` ≥ 4
∑
i∈T`

∑
`′ 6=`

Mi,`′

(13)

∀`,
∑
i∈T`Mi,`√
|T`|

≥ 8δ ·Max`′ |M·,`′ | (14)

Then, condition (8) of Theorem 9 holds.

Remark We point out that the Dominant Features assump-
tion is reasonable. But first, we bring the reader’s attention
to the fact that there are two parts of this assumption; the full
assumption is stated above and an abbreviated version in the
main text. The first part says that summed over the dominant
features of each `, the other columns have a smaller sum.
Separability like assumptions, would make the other sums
0, so what we have here is a weaker requirement. For the
second condition, note that if

∑
i∈T`Mi,` is a constant frac-

tion of Max`
∑d
i=1Mi,` and |T`| ∈ O(1/δ2), then, indeed

the second assumption holds. The setting |T`| = O(1/δ2)
is reasonable – we expect a small number of important fea-
tures. In the special case of Topic Modelling, this says a
small number of words together have a constant fraction
frequency which is reasonable.

Proof. Let |T1| + |T2| + · · · + |Tk| = m. Reorder i =
1, 2, . . . , d so that the first |T1| are from T1, the next |T2|
are from T2 etc. and so on until Tk and the last d−m don’t
belong to any T`. Now, let M̂ be the m× k matrix obtained
by deleting the last d−m rows from M. It suffices to prove
that ∣∣∣proj(M̂·,`,Null(M̂·,`′ , `

′ 6= `))
∣∣∣ ≥ δ|M·,`|. (15)

This can be seen by noting that

|proj(M·,`,Null(M·,`′ , `
′ 6= `))|

= Maxu∈Null(M·,`′ ,`
′ 6=`),|u|=1|u ·M·,`|, (16)

and taking u to be the vector obtained from u′ by appending
d−m zeros, where, u′ = proj(M̂·,`,Null(M̂·,`′ , `

′ 6= `)),
normalized to length 1. Now, we focus on proving (15).

Let
γ` =

∑
i∈T`

Mi,`.

We now define a k ×m matrix M, where the columns of
B are indexed by the sets T1, . . . , Tk in this order (note
that |T1| + . . . + |Tk| = m). For each ` ∈ [k], the entries

B`,j = 1/γ`, for all j ∈ T`. Rest of the entries of B are 0.
It is easy to see that

BM̂ = Ik×k −∆, where,

∆`,`′ =

{
0 for `′ = `

− 1
γ`

∑
i∈T`Mi,`′ for ` 6= `′.

.

For an s × t matrix D and ` ∈ [s], let ρ`(D) de-
note

∑t
`′=1 |D`,`′ |. The first Dominant Features Assump-

tion (13) implies that ρ`(∆) ≤ 1/4. So the matrix I − ∆
is diagonal dominant and hence invertible. Let C denote
(I−∆)−1. Then, by power series expansion, we have

C = (I + ∆ + ∆2 + · · · ).

It is easy to see that ρ`(∆r) ≤ 1/4r by simple induction.
So we have

ρ`(C) ≤ 1 + (1/4) + (1/42) + . . . = 4/3. (17)

Now, we have
CBM̂ = I.

Consider
u = (CB)`,·/|(CB)`,·|

and apply (16) (with M̂ instead of M) to get∣∣∣proj(M̂·,`,Null(M̂·,`′ , `
′ 6= `))

∣∣∣ ≥ u · M̂·,`
=

1

|(CB)`,·|
≥ 1

|C`,·| · ||B||
(17)
≥ 3

4
·min
`′

γ`′√
|T`′ |

≥ 2δ|M·,`|,

by the second Dominant Features assumption (14). This
completes the proof of the lemma.

As a corollary we get the following result.

Corollary 25. Assuming conditions (9) and (10) and also
the Dominant Features assumption, Algorithm 1 finds k in
polynomial time.

Proof. Lemma 24 shows that all the conditions in the state-
ment of Theorem 9 are met. Therefore, the result fol-
lows from Theorem 9. In order to complete the proof of
Thereom 20, it remains to analyze Algorithm 2, which we
do next.

D.1. Analysis of Algorithm 2

The following result states the guarantees obtained by Algo-
rithm 2.

Theorem 26. Suppose that the input data satisfies the fol-
lowing assumptions. There exists a δ ∈ (0, 1) such that
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• Well-Separatedness: Every vertex M.,` of K satisfies
the following condition:

|proj (M.,`,Null (M \M.,`))| ≥ δmax
`′
|M.,`′ |.

(18)

• Proximity: For all ` ∈ [k], let S` denote the following
set of indices:

S` := {j : |M.,` − P.,j | ≤
4σ√
δ
}. (19)

Then |S`| ≥ δn.

• Spectrally Bounded Perturbations: For every ` ∈
[k]

σ ≤ δ13|M.,`|/10000. (20)

Let δ1 denote 150k4σ
δ1.5 . Given k, Algorithm 2 finds, with high

probability, k points each of which is within distance δ1 of
a unique vertex of M.

In the rest of this section, we prove this theorem. The algo-
rithm will maintain the following invariants at the beginning
of each iteration r, r ≤ k:

There are r distinct indices `1, `2, . . . , `r ∈ [k] such that for
all t = 1, . . . , r

|Â.,Rt −M.,`t | ≤ δ1. (21)

We prove this statement by induction on r. When r = 0,
the statement follows trivially. Now assume that the above
statement holds at the beginning of iteration r, r < k. We
now show that Â.,r+1 will be close to a new vertex of K. We
give some notation first. Let M̃ and Ã denote the following
d× r matrices:

M̃ = (M·,`1 |M·,`2 | . . . |M·,`r )

Ã = (Â·,R1
| Â·,R2

| . . . |Â·,Rr )

The invariant condition (21) implies that

||M̃− Ã|| ≤ δ1
√
k (22)

We now give lower bounds on the singular values of M̃.

Lemma 27.

sr(M̃) ≥ sk(M) ≥ 10000σ

δ12
√
k
.

Proof.

sr(M̃) = min
|x|=1

|M̃x| ≥ min
|y|=1

|My| = sk(M).

Now, sk(M) is minx:|x|=1 |Mx|. Consider any unit vector
x ∈ <k. There must be an index ` such that |x`| ≥ 1√

k
.

But then |M · x| ≥ |proj(M · x,Null(M \ M.,`)| =
|x`||proj(M.,`,Null(M \M.,`)| ≥ δ√

k
· |M.,`|, by (18).

The result now follows from (20).

We now show the following consequence of Well-
Separatedness.

Claim 28. Let `, `′ be two distinct indices in [k], such that
`, `′ /∈ {`1, . . . , `r}. Then,

|proj(M.,` −M.,`′ ,Null(M̃)| ≥ δ ·Max`′′ |M.,`′′ |.

Proof. By definition,

|proj(M.,`−M.,`′ ,Null(M̃)| = Minx|M.,`−M.,`′−M̃x|,

where the minimum is taken over all vectors x. Now, for
any vector x, M.,`′ − M̃x lies in the span of {M.,`′′ : `′′ 6=
`, `′′ ∈ [k]}. Hence, the expression in the RHS above is at
least |proj(M.,`,Null(M \M.,`)|. The desired result now
follows from (18).

The following property of Ã is easy to see:

Claim 29. The matrix Ã is a full rank matrix. Further,

sr(Ã) ≥ 5000σ

δ12
√
k

Proof. Consider an index j ≤ r. Since Â.,Rj is not in
Span(Â.,R1

, . . . , Â.,Rj−1
, Ã is full rank. Now,

sr(Ã) ≥ sr(M̃)− ||Ã− M̃||
(22)

≥ sk(M)− δ1
√
k,

where the second inequality follows from the fact that M̃ is
obtained from M by removing some of the columns. The
desired result now follows from the definition of δ1 and
Lemma 27.

Recall the definition of the subspace Ur in Algorithm 2: V ∩
Null(Â.,R1

, . . . , Â.,Rr ). The subspace V is supposed con-
tain the span of M and Null(Â.,R1

, . . . , Â.,Rr ) is supposed
to be a close approximation to Null(M.,`1 , . . . ,M.,`r ).
Therefore, we would expect the subspace Ur to contain
a close approximation to Span(M) ∩Null(M̃). The fol-
lowing key lemma formalises this intuition.

Lemma 30. For every unit vector x ∈ Span(M) ∩
Null(M̃), there is a y ∈ Ur such that

|x− y| ≤ 1/1600.
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Proof. Let S`1 , . . . , S`r be as guaranteed by condition (19)
in the Proximity assumption. Define

B = (Â.,S1
| Â.,S2

| . . . |Â.,Sk).

Consider a unit vector x ∈ Span(M) ∩ Null(M̃). So
x = Mw for some vector w. It follows that

1 = |x| ≥ sk(M)|w|.

Therefore,

|Mw −Bw| ≤ ||M−B|| |w| ≤ ||M−B||/sk(M).
(23)

Inequality (9) implies that

||M−B|| ≤ 4σ
√
k√
δ
.

Lemma 27 implies that sk(M) ≥ 10000σ
δ12
√
k
. Therefore, us-

ing (23), we get

|Mw −Bw| ≤ kδ11.5/2500. (24)

We are trying to prove that there is a point in Ur close to
x = Mw. Inequality (24) shows that it is enough to find
a point in Ur which is close to Bw. A natural candidate
for this point is the projection of Bw onto Ur; note that
Bw ∈ V , so its projection onto Ur is obtained by subtract-
ing its component in Span(Ã), namely, the component is
(Claim 29 implies that ÃT Ã is invertible):

y = Bw − Ã(ÃT Ã)−1ÃTBw.

Now,

|y − x| = |y − M̃w| ≤ |y −Bw|+ |M̃w −Bw|
(24)

≤ |Ã(ÃT Ã)−1ÃTBw|+ kδ11.5

2500
(25)

It remains to bound the first term above. Now,

|Ã(ÃT Ã)−1ÃTBw| ≤
∣∣∣Ã(ÃT Ã)−1ÃT (Bw −Mw)

∣∣∣
+
∣∣∣Ã(ÃT Ã)−1ÃTMw

∣∣∣
≤ |Bw −Mw|

+ |Ã(ÃT Ã)−1(ÃT − M̃T )Mw|

≤ |Bw −Mw|+ 1

sr(Â)
||Ã− M̃||.

The second inequality above uses the fact that
Ã(ÃT Ã)−1Ã is a projection matrix, and hence has

spectral norm at most 1; and M̃TMw = M̃tx = 0 since
x ∈ Null(M̃). The third inequality uses the fact that
||Ã(ÃT Ã)−1|| = 1

sr(Ã)
and |Mw| = |x| = 1. The

invariant condition (23) implies that ||M̃ − Ã|| ≤ δ1
√
k.

Combining this with Claim 29 and (24), we see that the
RHS above is at most

kδ11.5

5000
+
δ1δ

12k

10000σ
.

The desired result now follows from the definition of δ1.

Let ur be the vector selected during iteration r of Algo-
rithm 2.

Lemma 31. With probability at least 1 − (c/k3/2), the
following hold:

∀`, `′ /∈ {`1, `2, . . . , `r}, ` 6= `′ :

|ur · (M.,` −M.,`′)| ≥
0.097δ

k4
Max`′′ |M.,`′′ |.

∀` /∈ {`1, `2, . . . , `r} :

|ur · (M·,`)| ≥
0.09989δ

k4
Max`′ |M.,`′ |.

Proof. We can write

M·,` = proj(M·,`,Null(M̃))︸ ︷︷ ︸
q`

+proj(M·,`,Span(M̃))︸ ︷︷ ︸
p`=M̃w(`)

,

where we use the fact that q` can be written asM·,`−M̃w(`)

for some w(`).

Since |p`| ≤ |M·,`|, Lemma 27 implies:

|w(`)| ≤ |p`|/sr(M̃) ≤ |M·,`|δ
12
√
k

10000σ
(26)

Recall that ur is a random unit length vector in subspace
Ur. Now,

ur ·M·,` = ur · q` + uTr M̃w(`)

= ur · proj(q`, Ur) + uTr (M̃− Ã)w(`),

since uTr Ã = 0. So,

|ur ·M·,` − ur · proj(q`, Ur)| ≤ ||(M̃− Ã)w(`)||

≤ ||M̃− Ã|||w(`)| ≤ δ10.5k5|M.,`|/60 ≤ δ5.5|M.,`|/60,
(27)

using (22) and (26). Similarly, for `′ 6= `,

ur·(M·,`−M·,`′) = ur·proj(q`−q`′ , U)+uTr M̃(w(`)−w(`′)).
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Since uTr Ã = 0,

|ur · (M·,` −M·,`′)− ur · proj(q` − q`′ , U)|

≤ |uTr (M̃− Ã)(w(`) − w(`′))|

Arguing as in (27),

|ur · (M·,` −M·,`′)− ur · proj(q` − q`′ , U)|

≤ ||M̃− Ã|||w(`) − w(`′)|
≤ δ5.5|M·,` −M·,`′ |/60. (28)

Now, ur is a random unit length vector in Ur, and
proj(q`, Ur),proj(q` − q`′ , Ur), `, `′ ∈ [k] are fixed vec-
tors in Ur (and the choice of ur doesn’t dependent on them).
Consider the following event E :

E : ∀` : |ur · proj(q`, Ur)| ≥
1

10k4
|proj(q`, Ur)| AND

∀` 6= `′ : |ur·proj(q`−q`′ , Ur)| ≥
1

10k4
|proj(q`−q`′ , U)|.

The negation of E is the union of at most k2 events (for each
` and each `, `′) and each of these has a failure probability
of at most 1/10k3.5 (since the k − 1 volume of {x ∈ Ur :
ur · x = 0} is at most

√
k times the volume of the unit ball

in U ). Thus, we have:

Pr(E) ≥ 1− 1

10k1.5
. (29)

We pay the failure probability and assume from now on that
E holds.

By Lemma 30, we have that there is a q′` ∈ Ur with |q′` −
q`| ≤ |q`|/1600 which implies (recall k ≥ 2):

|q` − proj(q`, Ur)| ≤
|q`|

1600
=⇒

|proj(q`, Ur)| ≥ .9999|q`|. (30)

So, under E ,∀` /∈ {`1, `2, . . . , `r}

|ur · proj(q`, Ur)| ≥ |proj(q`, Ur)|
1

10k4

≥ .09999|q`|
k4

≥ .09999δ|M·,`|
k4

, (31)

since |q`| ≥ |proj(M.,`,Null(M \M·,`))| ≥ δ|M·,`| by
(8).

By (27) and (31), ∀` /∈ {`1, `2, . . . , `r},

|ur·M·,`| ≥ |ur·proj(q`, Ur)|−
δ5.5|M·,`|

60
≥ .09989δ|M·,`|

k4
,

(32)
proving the second assertion of the Lemma.

Now we prove the first assertion. For ` /∈ {`1, `2, . . . , `r}
and `′ /∈ {`, `1, `2, . . . , `r}, by (28),

|ur · (M·,` −M·,`′)| ≥ |ur · proj(q` − q`′ , Ur)|−
δ5.5|M·,` −M·,`′ |

60

≥ 1

10k4
|proj(q` − q`′ , Ur)| −

δ5.5|M·,` −M·,`′ |
60

by E .

By Lemma 30, there exists a vector x ∈ Ur, such that
|x− (q` − q`′)| ≤ |q`−q`′ |1600 . Thus, we have

|proj(q` − q`′ , Ur)| ≥ .99|q` − q`′ | ≥ .99δMax`′′ |M·,`′′ |,

by Claim 28. This finishes the proof of the first assertion
and of the Lemma.

Claim 32. For all S ⊆ [n],

|Â.,S − P.,S | ≤
2σ
√
n√
|S|

.

Proof. Let Â denote the matrix whose columns are
Â.,1, . . . , Â.,n. Since P has rank at most 1/δ, it follows
that

||Â−P|| ≤ ||Â−A||+ ||A−P|| ≤ 2||A−P|| = 2σ
√
n.

Let 1S be the indicator vector for the subset S.

|Â.,S−P.,S | =
1

|S|
|(Â−P)1S | ≤

1

|S|
||Â−P||·|1S | ≤

2σ
√
n√
|S|

.

Lemma 33. Define ` by:

` =

{
arg max`′ ur ·M·,`′ if ur · Â.,Rr+1 ≥ 0

arg min`′ ur ·M·,`′ if ur · Â.,Rr+1
< 0

.

Then, ` /∈ {`1, `2, . . . , `r} and

|Â.,Rr+1 −M·,`| ≤ δ1.

Proof. Case 1 ur · Â.,Rr+1 ≥ 0.

Let
` = arg max

`′
ur ·M·,`′ .

We claim that ` /∈ {`1, `2, . . . , `r}. Suppose for contradic-
tion, ` ∈ {`1, `2, . . . , `r}; wlg, say ` = `1. Then, by induc-
tion hypothesis (21), we have that |Â.,R1 −M·,`1 | ≤ δ1 and
so, ur ·M·,`1 ≤ ur · Â.,R1

+ δ1 = δ1 (since ur ∈ Ur and
so ur ⊥ Â.,R1 ). So, for all `′, ur ·M·,`′ ≤ ur ·M·,`1 ≤ δ1.
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So, for all R ⊆ [n], P·,R which is in CH(M), satisfies
ur · P·,R ≤ δ1. So, by Claim 32,

ur · Â.,Rr+1 ≤ ur · P·,Rr+1 + (2σ/
√
δ)

≤ δ1 + (2σ/
√
δ) ≤ 2δ1 (33)

But for any t /∈ {`1, `2, . . . , `r}, we have with St as in (9),

|ur · Â.,St | ≥ |ur · P·,St | − (2σ/
√
δ), by Claim 32

≥ |ur ·M·,t| − (6σ/
√
δ) (34)

≥.09989δ|M·,`|/(k4)− 6σ/
√
δ

where the last inequality uses Lemma 31. So, ur · Â.,Rr+1

(which maximizes ur · Â.,R over all R, |R| = δn) must be
at least δ|M·,`|11k4 −

6σ√
δ

contradicting (33) by applying (10).
So, ` /∈ {`1, `2, . . . , `r} and we have by Lemma 31,

ur ·M·,` ≥
.09989αMax`′ |M·,`′ |

k4
. (35)

Also for `′ /∈ {`1, . . . , `r}, `′ 6= `, Lemma 31 implies that

ur ·M·,`′ ≤ ur ·M·,` −
.097δ

k4
Max`′′ |M·,`′′ |. (36)

Now, for `′ ∈ {`1, `2, . . . , `r}, wlg, say `′ = `1, we have
noting that |Â.,R1

−M·,`1 | ≤ δ1 by (21):

ur ·M·,`1 ≤ ur · Â.,R1
+ δ1

(35)
≤ ur ·M·,` −

.09989δMax`′ |M·,`′ |
k4

+ δ1

≤ ur ·M·,` −
.097δ

k4
Max`′′ |M·,`′′ |,

where the last inequality uses the definition of δ1.

Now, P·,Rr+1 is a convex combination of the columns of
M; say the convex combination is P·,Rr+1 = Mw. From
above, we have:

ur · Â.,Rr+1 ≤ ur · P·,Rr+1 +
2σ√
δ

, by Claim 32

≤ w`(ur ·M·,`)+∑
`′ 6=`

(
(ur ·M·,`)−

.097δ

k4
Max`′′ |M·,`′′ |

)
w`′

≤ ur ·M·,` −
.097δ

k4
Max`′′ |M·,`′′ |(1− w`). (37)

This and (34) imply:

(1− w`)Max`′′ |M·,`′′ | ≤
62k4

δ

σ√
δ
. (38)

So,

|P·,Rr+1
−M·,`| =

∣∣∣∣∣∣(w` − 1)M·,` +
∑
`′ 6=`

w`′M·,`′

∣∣∣∣∣∣
≤
∑
`′ 6=`

w`′ |M·,` −M·,`′ |

≤ 2(1− w`)Max`′′ |M·,`′′ | ≤
124k4

δ

σ√
δ
.

Now it follows from Claim 32 that |Â.,Rr+1
− M·,`| ≤

150k4

δ
σ√
δ

finishing the proof of the theorem in this case. An
exactly symmetric argument proves the theorem in the case
when u ·A·,S ≤ 0.


